Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 6
446
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the efficacy of turbulence models for swirling flows and the effect of turbulence intensity on heat transfer

, , &
Pages 485-502 | Received 11 Jun 2016, Accepted 07 Sep 2016, Published online: 28 Nov 2016

References

  • P. L. Davis, A. T. Rinehimer, and M. Uddin, A Comparison of RANS-based Turbulence Modeling for Flow Over a Wall-mounted Square Cylinder, In 20th Annual Conference of the CFD Society of Canada, Canmore, AL, Canada, May, pp. 9–12, 2012.
  • A. Meslem, F. Bode, C. Croitoru, and I. Nastase, Comparison of Turbulence Models in Simulating Jet Flow from a Cross-shaped Orifice, Eur. J. Mech. B Fluid, vol. 44, pp. 100–120, 2014.
  • Z. Zhang, W. Zhang, Z. J. Zhai, and Q. Y. Chen, Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2—Comparison with Experimental Data from Literature, HVAC&R Res., vol. 13, pp. 871–886, 2007.
  • W. Li, J. Ren, J. Hongde, Y. Luan, and P. Ligrani, Assessment of Six Turbulence Models for Modeling, and Predicting Narrow Passage Flows, Part 2: Pin Fin Arrays, Numer. Heat Transfer A Appl., vol. 69, pp. 445–463, 2016.
  • U. Engdar and J. Klingmann, Investigation of Two-equation Turbulence Models Applied to a Confined Axis-symmetric Swirling Flow, In ASME 2002 Pressure Vessels and Piping Conference, pp. 199–206, Vancouver, BC, Canada, 2002.
  • Y. G. Lai, Predictive Capabilities of Turbulence Models for a Confined Swirling Flow, AIAA J., vol. 34, pp. 1743–1745, 1996.
  • M. A. R. Sharif and Y. K. E. Wong, Evaluation of the Performance of Three Turbulence Closure Models in the Prediction of Confined Swirling Flows, Comput. Fluids, vol. 24, pp. 81–100, 1995.
  • J. L. Xia, G. Yadigaroglu, Y. S. Liu, J. Schmidli, and B. L. Smith, Numerical and Experimental Study of Swirling Flow in a Model Combustor, Int. J. Heat Mass Transfer, vol. 41, pp. 1485–1497, 1998.
  • P. D. Clausen, S. G. Koh, and D. H. Wood, Measurements of a Swirling Turbulent Boundary Layer Developing in a Conical Diffuser, Exp. Therm. Fluid Sci., vol. 6, pp. 39–48, 1993.
  • B. E. Launder and D. B. Spalding, The Numerical Computation of Turbulent Flows, Comput. Method Appl. Mech., vol. 3, pp. 269–289, 1974.
  • V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Phys. Fluids A Fluid, vol. 4, pp. 1510–1520, 1992.
  • D. C. Wilcox, Multiscale Model for Turbulent Flows, AIAA J., vol. 26, pp. 1311–1320, 1988.
  • F. R. Menter, Two-equation Eddy-viscosity Turbulence Models for Engineering Applications, AIAA J., vol. 32, pp. 1598–1605, 1994.
  • F. Nicoud and F. Ducros, Subgrid-scale Stress Modelling Based on the Square of the Velocity Gradient Tensor, Flow Turbul. Combust., vol. 62, pp. 183–200, 1999.
  • S. M. Yahya, S. F. Anwer, and S. Sanghi, LES of Stably Stratified Flow with Varying Thermophysical Properties, Numer. Heat Transfer A Appl., vol. 67, pp. 1408–1427, 2015.
  • A. C. Y. Yuen, G. H. Yeoh, V. Timochenko, and T. Barber, LES and Multi-step Chemical Reaction in Compartment Fires, Numer. Heat Transfer A Appl., vol. 68, pp. 711–736, 2015.
  • J. Smagorinsky, General Circulation Experiments with Primitive Equations, Mon. Weather Rev., vol. 93, pp. 99–165, 1963.
  • S. W. Churchill, A Reinterpretation of the Turbulent Prandtl Number, Ind. Eng. Chem. Res., vol. 41, pp. 6393–6401, 2002.
  • W. M. Kays, Turbulent Prandtl Number—Where Are We? J. Heat Transfer ASME, vol. 116, pp. 284–295, 1994.
  • T. J. Barth and D. C. Jesperson, The Design and Applications of Upwind Schemes on Unstructured Meshes, AIAA paper no. 89–0366, 1989.
  • F. Wang, W. Zhang, S. Y. Lv, C. T. Huang, and L. Liu, Fourier Analysis of the Effect of Grid Non-orthogonality on the SIMPLE Algorithm, Numer. Heat Transfer B Fund., vol. 67, pp. 531–549, 2015.
  • A. Ashrafizadeh, B. Alinia, and P. Mayeli, A New Co-Located Pressure Based Discretization Method for the Numerical Solution of Incompressible Navier-Stokes Equations, Numer. Heat Transfer B Fund., vol. 67, pp. 563–589, 2015.
  • D. K. Kolmogorov, W. Z. Shen, N. N. Sorensen, and J. N. Sorensen, Fully Consistent SIMPLE-Like Algorithms on Collocated Grids, Numer. Heat Transfer B Fund., vol. 67, pp. 101–123, 2015.
  • N. S. C. Kao, T. W. H. Sheu, and S. F. Tsai, On a Wavenumber Optimized Streamline Upwinding Method for Solving Incompressible Navier-Stokes Equations, Numer. Heat Transfer B Fund., vol. 67, pp. 75–99, 2015.
  • P. Roy, N. K. Anand, and D. Donzis, A Parallel-Multigrid Finite-Volume Solver on a Collocated Grid for Incompressible Navier-Stokes Equations, Numer. Heat Transfer B Fund., vol. 67, pp. 376–409, 2015.
  • K. K. Q. Zhang, B. Shotoerban, W. J. Minkowycz, and F. Mashayek, A Compact Finite Difference Method on Staggered Grid for Navier-Stokes Flows, Int. J. Num. Methods Fluids, vol. 52, pp. 867–881, 2006.
  • K. M. Kelkar, D. Choudhury, and W. J. Minkowycz, Numerical Method for the Computational of Flow in Irregular Domains that Exhibit Geometric Periodicity Using Non-Staggered Grids, Numer. Heat Transfer B Fund., vol. 31, pp. 1–12, 1997.
  • K. K. Q. Zhang, B. Rovagnati, Z. Gao, W. J. Minkowycz, and F. Mashayek, An Introduction to the Lattice Grid, Numer. Heat Transfer B Fund., vol. 51, pp. 415–431, 2007.
  • G. Comini, W. J. Minkowycz, and W. Shyy, General Algorithms for the Finite Element Solution of Incompressible Flow Problems Using Primitive Variables, Adv. Numer. Heat Transfer vol. 1, pp. 137–139, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.