Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 6
246
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

New formulation for the simulation of the conjugate heat transfer at the curved interfaces based on the ghost fluid lattice Boltzmann method

, &
Pages 559-576 | Received 10 May 2016, Accepted 07 Sep 2016, Published online: 28 Nov 2016

References

  • A. Horvat and B. Mavko, Calculation of Conjugate Heat Transfer Problem with Volumetric Heat Generation Using the Galerkin Method, Applied Math. Modell., vol. 29, no. 5, pp. 477–495, 2005.
  • F. Duchaine, N. Maheu, V. Moureau, G. Balarac, and S. Moreau, Large-Eddy Simulation and Conjugate Heat Transfer Around a Low-Mach Turbine Blade, J. Turbomachinery, vol. 136, no. 5, pp. 051015, 2014.
  • W. Nakayama and S.-H. Park, Conjugate Heat Transfer from a Single Surface-Mounted Block to Forced Convective Air Flow in a Channel, J. Heat Transfer, vol. 118, no. 2, pp. 301–309, 1996.
  • S. Chen and G. D. Doolen, Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, 1998.
  • C. K. Aidun and J. R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annu. Rev. Fluid Mech., vol. 42, no. 1, pp. 439–472, 2010.
  • X. He and L.-S. Luo, A Priori Derivation of the Lattice Boltzmann Equation, Phys. Rev. E, vol. 55, no. 6, pp. R6333, 1997.
  • I. Ginzbourg, Boundary Conditions Problems in Lattice Gas Methods for Single and Multiple Phases, Ph.D. thesis, University Paris VI, 1994.
  • J. Wang, M. Wang, and Z. Li, A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer, Int. J. Therm. Sci., vol. 46, no. 3, pp. 228–234, 2007.
  • M. Wang, J. Wang, N. Pan, and S. Chen, Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media, Phys. Rev. E, vol. 75, no. 3, pp. 036702, 2007.
  • A. Tarokh and A. A. Mohamad, Investigation of the Effects of Porous Media at the Exit of Counterflow Combustion Using the Lattice Boltzmann Method, Spec. Top. Rev. Porous Media Int. J., vol. 6, no. 3, pp. 221–237, 2015.
  • F. Meng, M. Wang, and Z. Li, Lattice Boltzmann Simulations of Conjugate Heat Transfer in High-Frequency Oscillating Flows, Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1203–1210, 2008.
  • G. Imani, M. Maerefat, and K. Hooman, Lattice Boltzmann Simulation of Conjugate Heat Transfer from Multiple Heated Obstacles Mounted in a Walled Parallel Plate Channel, Numer. Heat Transfer, Part A, vol. 62, no. 10, pp. 798–821, 2012.
  • K. Zhao, Q. Li, and Y. Xuan, Investigation on the Three-Dimensional Multiphase Conjugate Conduction Problem Inside Porous Wick with the Lattice Boltzmann Method, Sci. China, Ser. E: Technol. Sci., vol. 52, no. 10, pp. 2973–2980, 2009.
  • H. Yoshida, T. Kobayashi, H. Hayashi, T. Kinjo, H. Washizu, and K. Fukuzawa, Boundary Condition at a Two-Phase Interface in the Lattice Boltzmann Method for the Convection-Diffusion Equation, Phys. Rev. E, vol. 90, no. 1, pp. 013303, 2014.
  • H. Karani and C. Huber, Lattice Boltzmann Formulation for Conjugate Heat Transfer in Heterogeneous Media, Phys. Rev. E, vol. 91, no. 2, pp. 023304, 2015.
  • A. Tarokh, A. Mohamad, and L. Jiang, Simulation of Conjugate Heat Transfer Using the Lattice Boltzmann Method, Numer. Heat Transfer, Part A, vol. 63, no. 3, pp. 159–178, 2013.
  • L. Li, C. Chen, R. Mei, and J. F. Klausner, Conjugate Heat and Mass Transfer in the Lattice Boltzmann Equation Method, Phys. Rev. E, vol. 89, no. 4, pp. 043308, 2014.
  • G. Le, O. Oulaid, and J. Zhang, Counter-Extrapolation Method for Conjugate Interfaces in Computational Heat and Mass Transfer, Phys. Rev. E, vol. 91, no. 3, pp. 033306, 2015.
  • Y. Hu, D. Li, S. Shu, and X. Niu, Full Eulerian Lattice Boltzmann Model for Conjugate Heat Transfer, Phys. Rev. E, vol. 92, no. 6, pp. 063305, 2015.
  • A. Tiwari and S. P. Vanka, A Ghost Fluid Lattice Boltzmann Method for Complex Geometries, Int. J. Numer. Methods Fluids, vol. 69, no. 2, pp. 481–498, 2012.
  • R. Khazaeli, S. Mortazavi, and M. Ashrafizaadeh, Application of a Ghost Fluid Approach for a Thermal Lattice Boltzmann Method, J. Comput. Phys., vol. 250, pp. 126–140, 2013.
  • M. Mozafari-Shamsi, M. Sefid, and G. Imani, Developing a Ghost Fluid Lattice Boltzmann Method for Simulation of Thermal Dirichlet and Neumann Conditions at Curved Boundaries, Numer. Heat Transfer, Part B, vol. 70, no. 3, pp. 251–266, 2016.
  • P. L. Bhatnagar, E. P. Gross, and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. vol. 94, no. 3, pp. 511, 1954.
  • X. He, S. Chen, and G. D. Doolen, A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit, J. Comput. Phys., vol. 146, no. 1, pp. 282–300, 1998.
  • Y. Peng, C. Shu, and Y. Chew, Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows, Phys. Rev. E, vol. 68, no. 2, pp. 026701, 2003.
  • Q. Zou and X. He, On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model, Phys. Fluids, vol. 9, no. 6, pp. 1591, 1997.
  • A. D’Orazio and S. Succi, Simulating Two-Dimensional Thermal Channel Flows by Means of a Lattice Boltzmann Method with New Boundary Conditions, Future Gener. Comput. Syst., vol. 20, no. 6, pp. 935–944, 2004.
  • B. J. Jeon, Y. S. Kim, and H. G. Choi, Effect of the Reynolds Number on the Conjugate Heat Transfer Around a Circular Cylinder with Heat Source, J. Mech. Sci. Technol., vol. 26, no. 12, pp. 3849–3855, 2012.
  • Z. Guo and T.-S. Zhao, Explicit Finite-Difference Lattice Boltzmann Method for Curvilinear Coordinates, Phys. Rev. E, vol. 67, no. 6, pp. 066709, 2003.
  • S.-Y. Tuann and M. D. Olson, Numerical Studies of the Flow Around a Circular Cylinder by a Finite Element Method, Comput. Fluids, vol. 6, no. 4, pp. 219–240, 1978.
  • F. Nieuwstadt and H. Keller, Viscous Flow Past Circular Cylinders, Comput. Fluids, vol. 1, no. 1, pp. 59–71, 1973.
  • H. Ding, C. Shu, K. Yeo, and D. Xu, Simulation of Incompressible Viscous Flows Past a Circular Cylinder by Hybrid FD Scheme and Meshless Least Square-Based Finite Difference Method, Comput. Methods Appl. Mech. Eng., vol. 193, no. 9, pp. 727–744, 2004.
  • O. R. Mohammadipoor, H. Niazmand, and S. A. Mirbozorgi, Alternative Curved-Boundary Treatment for the Lattice Boltzmann Method and its Application in Simulation of Flow and Potential Fields, Phys. Rev. E, vol. 89, no. 1, pp. 013309-1–013309-12, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.