Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 2
514
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Development of a VOF+LS+SPP method based on FLUENT for simulating bubble behaviors in the electric field

, , , , &
Pages 186-201 | Received 19 Aug 2016, Accepted 04 Nov 2016, Published online: 15 Feb 2017

References

  • S. U. Sarnobat, S. Rajput, D. D. Bruns, D. W. DePaoli, C. S. Daw, and K. Nguyen, The Impact of External Electrostatic Fields on Gas–Liquid Bubbling Dynamics, Chem. Eng. Sci., vol. 59, pp. 247–258, 2004.
  • F. Chen, Y. Peng, Y. Z. Song, and M. Chen, EHD Behavior of Nitrogen Bubbles in DC Electric Fields, Exp. Therm. Fluid Sci., vol. 32, pp. 174–181, 2007.
  • W. Dong, R. Y. Li, H. L. Yu, and Y. Y. Yan, An Investigation of Behaviours of a Single Bubble in a Uniform Electric Field, Exp. Therm. Fluid Sci., vol. 30, pp. 579–586, 2006.
  • S. Siedel, S. Cioulachtjian, A. J. Robinson, and J. Bonjour, Electric Field Effects During Nucleate Boiling from an Artificial Nucleation Site, Exp. Therm. Fluid Sci., vol. 35, pp. 762–771, 2011.
  • H. J. Cho, I. S. Kang, Y. C. Kweon, and M. H. Kim, Study of the Behavior of a Bubble Attached to a Wall in a Uniform Electric Field, Int. J. Multiphase Flow, vol. 22, pp. 909–922, 1996.
  • J. Luo, D. Guo, J. B. Luo, and G. X. Xie, Numerical Simulation of Bubble Dynamics in a Micro-Channel under a Nonuniform Electric Field, Electrophoresis, vol. 32, pp. 414–422, 2011.
  • M. Jalaal, B. Khorshidi, E. Esmaeilzadeh, and F. Mohammadi, Behavior of a Single Bubble in a Nonuniform DC Electric Field, Chem. Eng. Commun., vol. 198, pp. 19–32, 2010.
  • J. D. Sherwood, Breakup of Fluid Droplets in Electric and Magnetic Fields, J. Fluid Mech., vol. 188, pp. 133–146, 1988.
  • E. Lac and G. M. Homsy, Axisymmetric Deformation and Stability of a Viscous Drop in a Steady Electric Field, J. Fluid Mech., vol. 590, pp. 239–264, 2007.
  • S. D. Deshmukh, and R. M. Thaokar, Deformation, Breakup and Motion of a Perfect Dielectric Drop in a Quadrupole Electric Field, Phys. Fluids (1994-Present), vol. 24, pp. 032105, 2012.
  • G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, A Front-Tracking Method for the Computations of Multiphase Flow, J. Comput. Phys., vol. 169, pp. 708–759, 2001.
  • J. S. Hua, L. K. Lim, and C. H. Wang, Numerical Simulation of Deformation/Motion of a Drop Suspended in Viscous Liquids Under Influence of Steady Electric Fields, Phys. Fluids (1994-Present), vol. 20, pp. 113302, 2008.
  • K. L. Pan, and Z. J. Chen, Simulation of Bubble Dynamics in a Microchannel Using a Front-Tracking Method, Comput. Math. Appl., vol. 67, pp. 290–306, 2014.
  • A. Fernández, G. Tryggvason, J. Che, and S. L. Ceccio, The Effects of Electrostatic Forces on the Distribution of Drops in a Channel Flow: Two-Dimensional Oblate Drops, Phys. Fluids (1994-Present), vol. 17, pp. 093302, 2005.
  • Q. Z. Yang, B. Q. Li, J. Y. Shao, and Y. C. Ding, A Phase Field Numerical Study of 3D Bubble Rising in Viscous Fluids under an Electric Field, Int. J. Heat Mass Transfer, vol. 78, pp. 820–829, 2014.
  • Q. Z. Yang, Y. Liu, B. Q. Li, and Y. C. Ding, Effect of Electric Field on a 3D Rising Bubble in Viscous Fluids //ASME 2013 Heat Transfer Summer Conference Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers, pp. V004T14A031-V004T14A031, 2013.
  • Y. Lin, P. Skjetne, and A. Carlson, A Phase Field Model for Multiphase Electro-Hydrodynamic Flow, Int. J. Multiphase Flow, vol. 45, pp. 1–11, 2012.
  • J. L. Wu, P. Z Huang, and X. L. Feng, A New Variational Multiscale FEM for the Steady-State Natural Convection Problem with Bubble Stabilization, Numer. Heat Transfer, Part A, vol. 68, pp. 777–796, 2015.
  • W. Z. Li, B. Dong, Y. J. Feng, and T. Sun, Numerical Simulation of a Single Bubble Sliding over a Curved Surface and Rising Process by the Lattice Boltzmann Method, Numer. Heat Transfer, Part B, vol. 65, pp. 174–193, 2014.
  • Y. Q. Zu, and Y. Y. Yan, A Numerical Investigation of Electrohydrodynamic (EHD) Effects on Bubble Deformation under Pseudo-Nucleate Boiling Conditions, Int. J. Heat Fluid Flow, vol. 30, pp. 761–767, 2009.
  • Z. T. Wang, Q. M. Dong, Y. H. Zhang, J. F. Wang, and J. L. Wen, Numerical Study on Deformation and Interior Flow of a Droplet Suspended in Viscous Liquid under Steady Electric Fields, Adv. Mech. Eng., vol. 6, pp. 532797, 2014.
  • D. L. Sun, Y. P. Yang, J. L. Xu, and W. Q. Tao, An Improved Volume of Fluid Method for Two-Phase Flow Computations on Collocated Grid System, ASME J. Heat Transfer, vol. 133 (4), pp. 041901, 2011.
  • H. B. Zhang, Y. Y. Yan, and Y. Q. Zu, Numerical Modelling of EHD Effects on Heat Transfer and Bubble Shapes of Nucleate Boiling, Appl. Math. Modell., vol. 34, pp. 626–638, 2010.
  • D. L. Sun, J. L. Xu, Q. C. Chen, and Y. Y Yan, Modulated Flow Pattern in a Condenser Tube with Two-Phase Flow Interacting with Mesh Screen Surface at Micro-Gravity, Int. J. Multiphase Flow, Vol. 69, pp. 54–62, 2015.
  • J. M. López-Herrera, S. Popinet, and M. A. Herrada, A Charge-Conservative Approach for Simulating Electrohydrodynamic Two-Phase Flows Using Volume-of-Fluid, J. Comput. Phys., vol. 230, pp. 1939–1955, 2011.
  • D. L. Sun, J. L. Xu, Y. N. Wang, J. Xie, and F. Xing, Effect of Gravity Levels on the Flow Pattern Modulation by the Phase Separation Concept, Comput. Fluids, Vol. 108, pp. 43–56, 2015.
  • Q. C. Chen, D. L. Sun, Condensation Heat Transfer Enhancement Mechanism for Vertical Upflows by the Phase Separation Concept at Small Gravity, Sci. Bull., Vol. 60, no. 20, pp. 1759–1767, 2015.
  • E. Bjørklund, The Level-Set Method Applied to Droplet Dynamics in the Presence of an Electric Field, Comput. Fluids, vol. 38, pp. 358–369, 2009.
  • S. Mählmann, and D. T. Papageorgiou, Buoyancy-Driven Motion of a Two-Dimensional Bubble or Drop Through a Viscous Liquid in the Presence of a Vertical Electric Field, Theor. Comput. Fluid Dyn., vol. 23, pp. 375–399, 2009.
  • Y. Lin, Two-Phase Electro-Hydrodynamic Flow Modeling by a Conservative Level Set Model, Electrophoresis, vol. 34, pp. 736–744, 2013.
  • O. Ghazian, K. Adamiak, and G. S. P. Castle, Numerical Simulation of Electrically Deformed Droplets Less Conductive than Ambient Fluid, Colloids Surf. A, vol. 423, pp. 27–34, 2013.
  • O. Ghazian, K. Adamiak, G. S. P. Castle, and Y. Higashiyama, Oscillation, Pseudo-Rotation and Coalescence of Sessile Droplets in a Rotating Electric Field, Colloids Surf. A, vol. 441, pp. 346–353, 2014.
  • C. W. Hirt, and B. D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., vol. 39, pp. 201–225, 1981.
  • S. Osher, and J. A. Sethian, Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput. Phys., vol. 79, pp. 12–49, 1988.
  • M. Sussman, and E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, J. Comput. Phys., vol. 162, pp. 301–337, 2000.
  • S. W. J. Welch, and G. Biswas, Direct Simulation of Film Boiling Including Electrohydrodynamic Forces, Phys. Fluids (1994-Present), vol. 19, pp. 012106, 2007.
  • G. Tomar, D. Gerlach, G. Biswas, N. Alleborn, A. Sharma, F. Durst, S. W. J. Welch, and A. Delgado, Two-Phase Electrohydrodynamic Simulations Using a Volume-of-Fluid Approach, J. Comput. Phys., vol. 227, pp. 1267–1285, 2007.
  • Z. Y. Wang, J. M. Yang, B. Koo, and F. Stern, A Coupled Level Set and Volume-of-Fluid Method for Sharp Interface Simulation of Plunging Breaking Waves, Int. J. Multiphase Flow, vol. 35, pp. 227–246, 2009.
  • S. Sunder, and G. Tomar, Numerical Simulations of Bubble Formation from Submerged Needles under Non-Uniform Direct Current Electric Field, Phys. Fluids (1994-Present), vol. 25, pp. 102104, 2013.
  • S. Sunder, and G. Tomar, Numerical Simulations of Bubble Formation from a Submerged Orifice and a Needle: The Effects of an Alternating Electric Field, Eur. J. Mech.-B/Fluids, vol. 56, pp. 97–109, 2016.
  • D. L. Sun, and W. Q. Tao, A Coupled Volume-of-Fluid and Level Set (VOSET) Method for Computing Incompressible Two-Phase Flows, Int. J. Heat Mass Transfer, vol. 53. pp. 645–655, 2010.
  • D. Z. Guo, D. L. Sun, Z. Y. Li, and W. Q. Tao, Phase Change Heat Transfer Simulation for Boiling Bubbles Arising from a Vapor Film by the VOSET Method, Numer. Heat Transfer, Part A, vol. 59. pp. 857–881, 2011.
  • D. L. Sun, J. L. Xu, P. Ding, and W. Q. Tao, Implementation of the Ideal Algorithm on Unsteady Two-Phase Flows, and Application Examples, Numer. Heat Transfer Part B, Vol. 63, no. 3, pp. 204–221, 2013.
  • K. Ling, Z. H. Li, D. L. Sun, Y. L. He, and W. Q. Tao, A Three-Dimensional Volume of Fluid, & Level Set (VOSET) Method for Incompressible Two-Phase Flow, Comput. Fluids, Vol. 118, pp. 293–304, 2015.
  • K. Ling, G. H. Son, D. L. Sun, W. Q. Tao, Three Dimensional Numerical Simulation on Bubble Growth, and Merger in Microchannel Boiling Flow, Int. J. Therm. Sci., Vol. 98, pp. 135–147, 2015.
  • D. X. Shi, Q. C. Bi, and R. Q. Zhou, Numerical Simulation of a Falling Ferrofluid Droplet in a Uniform Magnetic Field by the VOSET Method, Numer. Heat Transfer, Part A, vol. 66, pp. 144–164, 2014.
  • T. Wang, H. X. Li, Y. F. Zhang, and D. X. Shi, Numerical Simulation of Bubble Dynamics in a Uniform Electric Field by the Adaptive 3D-VOSET Method, Numer. Heat Transfer, Part A, vol. 67. pp. 1352–1369, 2015.
  • T. Wang, H. X. Li, and J. F. Zhao, Three-Dimensional Numerical Simulation of Bubble Dynamics in Microgravity under the Influence of Nonuniform Electric Fields, Microgravity Sci. Technol., pp. 1–10, 2016.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension Force, J. Comput. Phys., vol. 100, pp. 335–354, 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.