Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 5
255
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

An efficient SIMPLER-revised algorithm for incompressible flow with unstructured grids

, &
Pages 425-442 | Received 07 Oct 2016, Accepted 20 Jan 2017, Published online: 06 Apr 2017

References

  • C. Geuzaine and J. F. Remacle, GMSH: A Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-processing Facilities, Int. J. Numer. Meth. Eng., vol. 79, no. 11, pp. 1309–1331, 2009.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.
  • S. R. Mathur and J. Y. Murthy, A Pressure-Based Method for Unstructured Meshes, Numer. Heat Transfer B Fund., vol. 31, pp. 195–215, 1997.
  • S. Muzaferija, Adaptive Finite Volume Method for Flow Prediction Using Unstructured Meshes and Multi-Grid Approach, Ph.D. thesis, The University of London, London, pp.1–2, 1994.
  • W. Q. Tao, Numerical Heat Transfer, 2nd ed., Xi’an Jiaotong University Press, Xi’an, 2001.
  • J. D. Anderson Jr, Computational Fluid Dynamics. The Basics with Applications, McGraw-Hill Inc., New York, 1995.
  • C. Taylor and P. Hood, A Numerical Solution of the Navier–Stokes Equations Using the Finite Element Technique. Comput. Fluids, vol. 1, pp. 73–100, 1973.
  • D. K. Gartling, Finite Element Analysis of Viscous, Incompressible Fluid Flow, Ph.D. thesis, The University of Texas, Austin, Texas, 1975.
  • L. Mangani, M. Darwish, and F. Moukalled, An OpenFOAM Pressure-Based Coupled CFD Solver for Turbulent and Compressible Flows in Turbomachinery Applications, Numer. Heat Transfer B Fund., pp. 1–19, 2016.
  • Z. Mazhar, A Novel Fully Implicit Block Coupled Solution Strategy for the Ultimate Treatment of the Velocity–Pressure Coupling Problem in Incompressible Fluid Flow, Numer. Heat Transfer B Fund., vol. 69, no. 2, pp. 130–149, 2016.
  • K. Luo, H. L. Yi, and H. P. Tan, Coupled Radiation and Mixed Convection in an Eccentric Annulus Using The Hybrid Strategy of Lattice Boltzmann-Meshless Method, Numer. Heat Transfer B Fund., vol. 66, pp. 243–267, 2014.
  • M. Darwish and F. Moukalled, A Fully Coupled Navier–Stokes Solver for Fluid Flow at All Speeds, Numer. Heat Transfer B Fund., vol. 65, no. 5, pp. 410–444, 2014.
  • M. E. Braaten, Development and Evaluation of Iterative and Direct Methods for the Solution of Equations Governing Recirculating Flows, Ph.D. thesis, The University of Minnesota, Minneapolis, MN, 1985.
  • J. Kim and P. Moin, Application of a Fractional-Step Method to Incompressible Navier–Stokes Equations, J. Comput. Phys., vol. 59, pp. 308–323, 1985.
  • T. J. R. Hughes, W. K. Liu, and A. Brooks, Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation. J. Comput. Phys., vol. 30, pp. 1–60, 1979.
  • M. E. Braaten and W. Shyy, Comparison of Iterative and Direct Method for Viscous Flow Calculations in Body-fitted Coordinates, Int. J. Numer. Meth. Fluids, vol. 6, pp. 325–349, 1986.
  • A. J. Chorin, A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Comput. Phys., vol. 2, pp. 12–26, 1967.
  • C. H. Sheng, D. L. Whitfield, and W. K. Anderson, A Multi-Block Approach for Calculating Incompressible Fluid Flows on Unstructured Grids, AIAA J., vol. 37, no. 2, pp. 169–176, 1999.
  • S. V. Patankar and D. B. Spalding, A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, vol. 15, pp. 1787–1806, 1972.
  • B. Yu, H. Ozoe, and W. Q. Tao, A Modified Pressure-Correction scheme for the SIMPLER Method, MSIMPLER, Numer. Heat Transfer B Fund., vol. 39, pp. 439–449, 2001.
  • S. V. Patankar, A Calculation Procedure for Two-dimensional Elliptic Situations. Numer. Heat Transfer, vol. 4, pp. 409–425, 1981.
  • J. P. van Doormaal and G. D. Raithby, Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flow. Numer. Heat Transfer, vol. 7, pp. 147–163, 1984.
  • G. D. Raithby and G. E. Schneider, Elliptic System: Finite Difference Method II, in W. J. Minkowycz, E. M. Sparrow, R. H. Pletcher, and G. E. Schneider, (eds.), Handbook of Numerical Heat Transfer, pp. 241–289, Wiley, New York, 1988.
  • R. I. Issa, Solution of Implicitly Discretized Fluid Flow Equation by Operator Splitting, J. Comput. Phys., vol. 62, pp. 40–65, 1985.
  • R. H. Yen and C. H. Liu, Enhancement of the SIMPLE Algorithm by an Additional Explicit Corrector Step, Numer. Heat Transfer B Fund., vol. 24, pp. 127–141, 1993.
  • W. Q. Tao, Z. G. Qu, and Y. L. He, A Novel Segregated Algorithm for Incompressible Fluid and Heat Transfer Problems-CLEAR (Coupled and Linked Equations Algorithm Revised) Part I: Mathematical Formulation and Solution Procedure, Numer. Heat Transfer B Fund., vol. 45, pp. 1–17, 2004.
  • D. L. Sun, W. Q. Tao, and Z. G. Qu, An Efficient Segregated Algorithm for Incompressible Fluid Flow, and Heat Transfer Problems-IDEAL (Inner Doubly Iterative Efficient Algorithm for Linked Equations), Part I: Mathematical Formulation and Solution Procedure, Numer. Heat Transfer B Fund., vol. 53, pp. 1–17, 2007.
  • P. Ding and D. L. Sun, A Pressure-based Segregated Solver for Incompressible Flow on Unstructured Grids, Numer. Heat Transfer B Fund., vol. 64, no. 6, pp. 460–479, 2013.
  • S. C. Xue and G. W. Barton, A Finite Volume Formulation for Transient Convection and Diffusion Equations with Unstructured Distorted Grids and Its Applications in Fluid Flow Simulations with a Collocated Variable Arrangement, Comput. Meth. Appl. Mech. Eng., vol. 253, pp. 146–159, 2013.
  • M. Darwish and F. Moukalled, TVD Schemes for Unstructured Grids, Int. J. Heat Mass Transfer, vol. 46, no. 4, pp. 599–611, 2003.
  • L. X. Li, H. S. Liao, and L. J. Qi, An Improved r-Factor Algorithm for TVD Schemes, Int. J. Heat Mass Transfer, vol. 51, pp. 610–617, 2008.
  • J. Hou, F. Simons, and R. Hinkelmann, Improved TVD Schemes for Advection Simulation on Arbitrary Grids, Int. J. Numer. Meth. Fluids, vol. 70, pp. 359–382, 2012.
  • M. M. Athavale, Y. Jiang, and A. J. Przekwas, Application of an Unstructured Grid Solution Methodology to Turbomachinery Flows, AIAA Paper 98–0174, Reno, NV, 1995.
  • P. K. Khosla and S. G. Rubin, A Diagonally Dominant Second-order Accurate Explicit Scheme, Comput. Fluid, vol. 2, pp. 207–209, 1974.
  • P. J. Zeart and G. D. Raithby, An Integrated Space-time finite volume method for Moving-Boundary Problems, Numer. Heat Transfer B Fund., vol. 34, pp. 257–270, 1998.
  • P. Traore, Y. M. Ahopo, and C. Louste, A Robust and Efficient Finite Volume Scheme for the Discretization of Diffusive Flux on Extremely Skewed Meshes in Complex Geometries, J. Comput. Phys., vol. 228, pp. 5148–5159, 2009.
  • Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., vol. 7, pp. 856–869, 1986.
  • C. M. Rhie and W. L. Chow, A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation, AIAA J., vol. 21, pp. 1525–1535, 1983.
  • S. Majumdar, Role of Underrelaxation in Momentum Interpolation for Calculation of Flow with Nonstaggered Grids, Numer. Heat Transfer, vol. 13, pp. 125–132, 1988.
  • S. K. Choi, Note on the Use of Momentum Interpolation Method for Unsteady Flows, Numer. Heat Transfer B Fund., vol. 36, pp. 545–550, 1999.
  • E. Blosch, W. Shyy, and R. Smith, The Role of Mass Conservation in Pressure-Based Algorithm, Numer. Heat Transfer B Fund., vol. 24, pp. 415–429, 1993.
  • U. Ghia, K. N. Ghia, and C. T. Shin, High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multi-Grid Method, J. Comput Phys., vol. 48, pp. 387–411, 1982.
  • E. Erturk, T. C. Corke, and C. Gokcol, Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers. Int. J. Numer. Methods Fluids, vol. 48, no. 7, pp. 747–774, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.