Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 6
113
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Tri-quadratic skew upwind scheme for scalar advection in a control-volume-based finite element method

ORCID Icon, &
Pages 485-505 | Received 14 Oct 2016, Accepted 03 Mar 2017, Published online: 01 May 2017

References

  • E. O. B. Ogedengbe and G. F. Naterer, Non-Inverted Skew Upwind Scheme (NISUS) for Three-Dimensional Convective Transport, Numer. Heat Transf. Part B Fundam., vol. 46, no. 2, pp. 141–164, 2004.
  • J. D. Anderson, Jr., Computational Fluid Dynamics. The Basics with Applications, International Edition, McGraw-Hill, Inc., New York, NY, 1985.
  • R. Löhner, Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods, 2nd ed., John Wiley & Sons, Chichester, UK, 2008.
  • R. A. Gentry, R. E. Martin, and B. J. Daly, An Eulerian Differencing Method for Unsteady Compressible Flow Problems, J. Comput. Phys., vol. 1, no. 1, pp. 87–118, 1966.
  • H. Z. Barakat and J. A. Clark, Analytical and Experimental Study of Transient Laminar Natural Convection Flows in Partially Filled Containers, NASA Technical Report Server, NASA, USA, 1966.
  • A. K. Runchal and M. Wolfshtein, Numerical Integration Procedure for the Steady State Navier–Stokes Equations, J. Mech. Eng. Sci., vol. 11, no. 5, pp. 445–453, 1969.
  • D. B. Spalding, A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives, Int. J. Numer. Methods Eng., vol. 4, pp. 551–559, 1962.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C., 1980.
  • F. G. Blottner, Numerical Solution of Convection-Diffusion Equations, Comput. Fluids, vol. 6, pp. 15–24, 1978.
  • G. D. Raithby, A Critical Evaluation of Upstream Differencing Applied to Problems Involving Fluid Flow, Comput. Methods Appl. Mech. Eng., vol. 9, pp. 75–103, 1976.
  • G. de Vahl Davis and G. D. Mallinson, An Evaluation of Upwind and Central Difference Approximations by a Study of Recirculating Flow, Comput. Fluids, vol. 4, pp. 24–43, 1976.
  • B. P. Leonard, A Survey of Finite Differences of Opinion on Numerical Muddling of the Incomprehensible Defective Confusion Equation, in T. J. R. Hughes (ed.), Proceedings of a Symposium on Finite Element Methods for Convection Dominated Flows, pp. 1–17, ASME Winter Annual Meeting, New York, 1979.
  • G. D. Raithby, Skew Upstream Differencing Schemes for Problems Involving Fluid Flow, Comput. Methods Appl. Mech. Eng., vol. 9, pp. 153–164, 1976.
  • B. P. Leonard, A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation, Comput. Methods Appl. Mech. Eng., vol. 19, pp. 59–98, 1979.
  • R. Piva, A. Di Carlo, and G. Guj, Finite Element MAC Scheme in General Curvilinear Coordinates, Comput. Fluids, vol. 8, pp. 225–241, 1980.
  • P. M. Cresho and R. L. Lee, Don’t Suppress the Wiggles-They’re Telling You Something!, in T. J. R. Hughes (ed.), Proceedings o/a Finite Element Methods for Convection Dominated Flows, pp. 37–61, ASME Winter Annual Meeting, New York, 1979.
  • I. Christie, D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, Finite Element Methods for Second Order Differential Equations with Significant First Derivatives, Int. J. Numer. Methods Eng., vol. 10, pp. 1389–1396, 1976.
  • J. C. Heinrich, P. S. Huyakorn, O. C. Zienkiewicz, and A. R. Mitchell, An “Upwind” Finite Element Scheme for Two Dimensional Convective Transport Equation, Int. J. Numer. Methods Eng., vol. 1, pp. 131–143, 1977.
  • P. S. Huyakorn, Solution of Steady-State, Convective Transport Equation Using and Upwind Finite Element Scheme, Appl. Math. Modell., vol. 1, pp. 187–195, 1977.
  • J. C. Heinrich and O. C. Zienkiewicz, Quadratic Finite Element Schemes for Two dimensional Convective-Transport Problems, Int. J. Numer. Methods Eng., vol. 1, pp. 1831–1844, 1977.
  • T. J. R. Hughes, W. K. Liu, and A. Brooks, Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation, J. Comput. Phys., vol. 30, pp. 1–60, 1979.
  • T. J. R. Hughes and A. Brooks, A Multi-Dimensional Upwind Scheme with No Crosswind Diffusion, in T. J. Hughes (ed.), Proceedings of a Symposium on Finite Element Methods for Convection Dominated Flows, pp. 19–35, ASME Winter Annual Meeting, New York, 1979.
  • B. R. Baliga and S. V. Patankar, A New Finite Element Formulation for Convection-Diffusion Problems, Numer. Heat Transf., vol. 3, pp. 393–409, 1980.
  • B. R. Baliga and S. V. Patankar, A Control-Volume Finite Element Method for Two-Dimensional Incompressible Fluid Flow and Heat Transfer, Numer. Heat Transf., vol. 6, pp. 245–261, 1983.
  • B. R. Baliga, A Control Volume Based Finite Element Method for Convective Heat Transfer, Ph.D. thesis, University of Minnesota, 1978.
  • A. M. Winslow, Numerical Solution of the Quasilinear Poisson Equation in a Non-Uniform Triangle Mesh, J. Comput. Phys., vol. 2, pp. 149–172, 1967.
  • D. Williamson, Numerical Integration of Fluid Flow over Triangular Grids, Monthly Weather Rev., vol. 97, pp. 885–895, 1969.
  • B. R. Baliga, Control-Volume Finite Element Methods for Fluid Flow, and Heat Transfer in: W. J. Minkowycz and E. M. Sparrow (ed.), Advances in Numerical Heat Transfer, vol. 1, Taylor & Francis, Bristol, 1997.
  • S. Ramadhyani, Solution of the Equations of Convective Heat, Mass and Momentum Transfer by the Finite Element Method using Quadrilateral Elements, Ph.D. thesis, University of Minnesota, 1979.
  • C. Prakash, Finite Element Methods for Predicting Flow through Ducts with Arbitrary Cross-Sections, Ph.D thesis, University of Minnesota, 1981.
  • V. R. Voller, Basic Control Volume Finite Element Methods for Fluids and Solids, IISc Research Monographs, vol. 1, World Scientific, Singapore, 2009.
  • G. E. Schneider, and M. J. Raw, A Skewed, Positive Influence Coefficient Upwinding Procedure for Control Volume-Based Finite-Element Convection-Diffusion Computation, Numer. Heat Transf. Int. J. Comput. Methodol., vol. 9, no. 1, pp. 1–26, 1986.
  • G. E. Schneider and M. J. Raw, Control Volume Finite Element Method for Heat Transfer and Fluid Flow using Collocated Variables-1, Comput. Proced. Numer. Heat Transf. Int. J. Comput. Methodol., vol. 11, no. 4, pp. 363–390, 1987.
  • G. E. Schneider and M. J. Raw, Control Volume Finite Element Method for Heat Transfer and Fluid Flow using Collocated Variables-2, Appl. Validation Numer. Heat Trans. Int. J. Comput. Methodol., vol. 11, no. 4, pp. 391–400, 1987.
  • M. J. Raw, G. E. Schneider, and V. Hassani, A Nine-Node Quadratic Control Volume-Based Finite Element for Heat Conduction, J. Spacecraft, vol. 22, no. 5, pp. 523–529, 1985.
  • B. L. Muir and B. R. Baliga, Solution of Three-Dimensional Convection Diffusion Problems using Tetrahedral Element and Flow-Oriented Upwind Interpolation Functions, Numer. Heat Transf., vol. 9, pp. 163–182, 1986.
  • O. A. Neves, E. C. Romão, J. B. C. Silva, and L. F. M. de Moura, Numerical Simulation of Convection-Diffusion Problems by the Control-Volume-Based Finite-Element Method, Numer. Heat Transf. Part A Appl., vol. 57, no. 10, pp. 730–748, 2010.
  • E. O. B. Ogedengbe, Non-Inverted Skew Upwind Scheme (NISUS) for Three Dimensional Convective Transport, Ph.D. thesis, University of Manitoba, 2006.
  • G. Prathap, The Finite Element Method in Structural Mechanics, Principle and Practice, Springer, Netherlands, 1993.
  • R. M. Smith and A. G. Hutton, The Numerical Treatment of Advection: A Performance Comparison of Current Methods, Numer. Heat Transf., vol. 5, pp. 439–461, 1982.
  • W. Schonauer, K. Raith, and G. Glotz, The SLDGL Program Package for the Self-Adaptive Solution of Non-Linear System of Elliptic , and Parabolic PDE’s, Proc. Fourth IMACS Int. Symp. Computer Methods for PDE’s, Lehigh University, Lehigh, PA, 1983.
  • W. Schonauer, K. Raith, and G. Glotz, The Self-Adaptive Solution of Non-linear 2-D Boundary Value Problems in Rectangular Domain’, Proc. Int. Conf. Numerical Methods in Laminar and Turbulent Flow, Venice, Italy, Pineridge, Swanson, UK, 1981.
  • E. O. B. Ogedengbe and G. F. Naterer, Three-Dimensional Distributed Mass Weighting for Non-Inverted Convective Skew Upwinding, J. Thermophys. Heat Transf., vol. 18, no. 4, pp. 502–510, 2004.
  • D. P. Zielinski and V. R. Voller, A Control Volume Finite Element Method with Spines for Solutions of Fractional Heat Conduction Equations, Numer. Heat Transf. B Int. J. Comput. Methodol., vol. 70, no. 6, pp. 503–516, 2016.
  • D. C. Lo, A Novel Volume-of-Solid-Based Immersed-Boundary Method for Viscous Flow with a Moving Rigid Boundary, Numer. Heat Transf. Part B Fundam., vol. 68, no. 2, pp. 115–140, 2015.
  • B. R. Batista Fernandes, F. Marcondes, and K. Seperhnoori, Investigation of Several Interpolation Functions for Unstructured Meshes in Conjunction with Compositional Reservoir Simulation, Numer. Heat Transf. Part A Appl., vol. 64, no. 12, pp. 974–993, 2013.
  • M. Sheikholeslami and A. J. Chamkha, Flow and Convective Heat Transfer of a Ferro-Nanofluid in a Double-Sided Lid-Driven Cavity with a Wavy Wall in the Presence of a Variable Magnetic Field, Numer. Heat Transf. Part A Appl., vol. 69, no. 10, pp. 1186–1200, 2016.
  • M. Sheikholeslami and A. J. Chamkha, Electrohydrodynamic Free Convection Heat Transfer of a Nanofluid in a Semi-Annulus Enclosure with a Sinusoidal Wall, Numer. Heat Transf. Part A Appl., vol. 69, no. 7, pp. 781–793, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.