Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 2
421
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Hybrid central–WENO scheme for the large eddy simulation of turbulent flows with shocks

, &
Pages 170-189 | Received 12 Apr 2017, Accepted 07 Jul 2017, Published online: 18 Aug 2017

References

  • L. Paniagua, O. Lehmkuhl, C. Oliet, and C. D. Pérez-Segarra, Large Eddy Simulations (LES) on the Flow and Heat Transfer in a Wall-Bounded Pin Matrix, Numer. Heat Transfer B, vol. 65, pp. 103–128, 2014.
  • S. A. Tkachenko, G. E. Lau, V. Timchenko, G. H. Yeoh, and J. Reizes, Effect of Heat Loss on Turbulent Buoyancy-Driven Flow in a Rectangular Cavity Using the Large-Eddy Simulation, Numer. Heat Transfer A, vol. 70, pp. 689–706, 2016.
  • U. Allauddin, M. Klein, M. Pfitzner, and N. Chakraborty, A Priori and a Posteriori Analyses of Algebraic Flame Surface Density Modeling in the Context of Large Eddy Simulation of Turbulent Premixed Combustion, Numer Heat Transfer A, vol. 71, pp. 153–171, 2017.
  • N. Gourdain, F. Sicot, F. Duchaine, and L. Gicquel, Large Eddy Simulation of Flows in Industrial Compressors: a Path from 2015 to 2035, Philos. Trans. R. Soc. A, vol. 372, pp. 1–18, 2014.
  • J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, NASA Langley Research Center, Hampton, VA, USA, 2014 (NASA/CR-2014–218178).
  • G. S. Jiang and C. W. Shu, Efficient Implementation of Weighted ENO Schemes, J. Comput. Phys., vol. 126, pp. 202–228, 1996.
  • B. Thornber, A. Mosedale, and D. Drikakis. On the Implicit Large Eddy Simulations of Homogeneous Decaying Turbulence, J. Comput. Phys., vol. 226, pp. 1902–1929, 2007.
  • M. P. Martín, E. M. Taylor, M. Wu, and V. G. Weirs, A Bandwidth-Optimized WENO Scheme for the Effective Direct Numerical Simulation of Compressible Turbulence, J. Comput. Phys., vol. 220, pp. 270–289, 2006.
  • N. K. Yamaleev and M. H. Carpenter, A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes, J. Comput. Phys., vol. 228, pp. 4248–4272, 2009.
  • X. Y. Hu, Q. Wang, and N. A. Adams, An Adaptive Central-Upwind Weighted Essentially Non-Oscillatory Scheme, J. Comput. Phys., vol. 229, pp. 8952–8965, 2010.
  • Q. Li, Q. Guo, D. Sun, P. Liu, and H. Zhang, A Fourth-Order Symmetric WENO Scheme with Improved Performance by New Linear and Nonlinear Optimizations, J. Sci. Comput., vol. 71, pp. 109–143, 2017.
  • N. A. Adams and K. Shariff, A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems, J. Comput. Phys., vol. 127, pp. 27–51, 1996.
  • S. Pirozzoli, Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction, J. Comput. Phys., vol. 178, pp. 81–117, 2002.
  • Y. X. Ren and H. Zhang, A Characteristic-Wise Hybrid Compact-WENO Scheme for Solving Hyperbolic Conservation Laws, J. Comput. Phys., vol. 192, pp. 365–386, 2003.
  • N. Mahmoudnejad and K. A. Hoffmann, A Hybrid Scheme for the Numerical Simulation of Shock/Discontinuity Problems, Int. J. Comput. Fluid Dyn., vol. 25, pp. 469–486, 2011.
  • G. Stipcich, H. Fu, and C. Liu, High-Order Mixed Weighted Compact and Non-Compact Scheme for Shock and Small Length Scale Interaction, Int. J. Comput. Math., vol. 90, pp. 376–407, 2013.
  • D. Kim and J. H. Kwon, A High-Order Accurate Hybrid Scheme Using a Central Flux Scheme and a WENO Scheme for Compressible Flowfield Analysis, J. Comput. Phys., vol. 210, pp. 554–583, 2005.
  • D. J. Hill and D. I. Pullin, Hybrid Tuned Center-Difference-WENO Method for Large Eddy Simulations in the Presence of Strong Shocks, J. Comput. Phys., vol. 194, pp. 435–450, 2004.
  • X. Wu, and Y. Zhao, A High-Resolution Hybrid Scheme for Hyperbolic Conservation Laws, Int. J. Numer. Methods Fluids, vol.78, pp. 162–187, 2015.
  • A. Harten, The Artificial Compression Method for Computation of Shocks and Contact Discontinuities. III. Self-Adjusting Hybrid Schemes, Math. Comput., vol. 32, pp. 363–389, 1978.
  • C. Liu, H. Fu, and P. Lu, New Shock Detector and Improved Control Function for Shock-Boundary Layer Interaction, Int. J. Numer. Anal. Model., vol. 9, pp. 276–288, 2012.
  • X. Y. Hu, B. Wang, and N. A. Adams, An Efficient Low-Dissipation Hybrid Weighted Essentially Non-Oscillatory Scheme, J. Comput. Phys., vol. 301, pp. 415–424, 2015.
  • A. Jameson, W. Schmidt, and E. Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time Stepping Scheme, AIAA Paper-1981–1259, 1981.
  • F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu, and T. Poinso, Large-eddy Simulation of the Shock/Turbulence Interaction, J. Comput. Phys., vol. 152, pp. 517–549, 1999.
  • F. Nicoud, F. Ducros, Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor, Flow Turb. Combust., vol. 62, pp. 183–200, 1999.
  • M. S. Liou, A Sequel to AUSM, Part II: AUSM+-up for All Speeds, J. Comput. Phys., vol. 214, pp. 137–170, 2006.
  • C. Bogey and C. Bailly, Three-Dimensional Non-Reflective Boundary Conditions for Acoustic Simulations: Far Field Formulation and Validation Test Cases, Acta Acust., vol. 88, pp. 463–471, 2002.
  • R. Samtaney, D. I. Pullin, and B. Kosovic, Direct Numerical Simulation of Decaying Compressible Turbulence and Shocklet Statistics, Phys. Fluids, vol. 13, pp. 1415–1430, 2001.
  • L. Zhao and C. Zhang, A Parallel Unstructured Finite-Volume Method for All-Speed Flows, Numer. Heat Transfer B, vol. 65, pp. 336–358, 2014.
  • H. Zhang, Non-Oscillatory and Non-Free-Parameter Dissipation Difference Scheme, Acta Aerodyn. Sin., vol. 6, pp. 143–165, 1988.
  • N. D. Sandham, Y. F. Yao, and A. A. Lawal, Large-Eddy Simulation of Transonic Turbulent Flow over a Bump, Int. J. Heat Fluid Flow, vol. 24, pp. 584–595, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.