Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 3
259
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Cascaded collision lattice Boltzmann model (CLBM) for simulating fluid and heat transport in porous media

, , , &
Pages 211-232 | Received 21 Apr 2017, Accepted 23 Aug 2017, Published online: 25 Sep 2017

References

  • M. Geier, A. Greiner, and J. Korvink, “Cascaded digital lattice Boltzmann automata for high reynolds number flow,” Phys. Rev. E, vol. 73, no. 6, 2006. doi:10.1103/physreve.73.066705
  • Z. Guo and T. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E, vol. 66, no. 3, 2002. doi:10.1103/physreve.66.036304
  • Z. Guo and T. Zhao, “Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity,” Prog. Comput. Fluid Dyn., vol. 5, no. 12, p. 110, 2005. doi:10.1504/pcfd.2005.005823
  • U. Ghia, K. Ghia, and C. Shin, “High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comput. Phys., vol. 48, no. 3, pp. 387–411, 1982. doi:10.1016/0021-9991(82)90058-4
  • P. Nithiarasu, K. Seetharamu, and T. Sundararajan, “Natural convective heat transfer in a fluid saturated variable porosity medium,” Int. J. Heat Mass Transfer, vol. 40, no. 16, pp. 3955–3967, 1997. doi:10.1016/s0017-9310(97)00008-2
  • P. Nithiarasu and K. Ravindran, “A new semi-implicit time stepping procedure for buoyancy driven flow in a fluid saturated porous medium,” Comput. Methods Appl. Mech. Eng., vol. 165, no. 1–4, pp. 147–154, 1998. doi:10.1016/s0045-7825(98)00036-x
  • R. Vishnampet, A. Narasimhan, and V. Babu, “High rayleigh number natural convection inside 2D porous enclosures using the lattice Boltzmann method,” J. Heat Transfer, vol. 133, no. 6, p. 062501, 2011. doi:10.1115/1.4003534
  • V. Babu and A. Narasimhan, “Investigation of vortex shedding behind a porous square cylinder using lattice Boltzmann method,” Phys. Fluids, vol. 22, no. 5, p. 053605, 2010. doi:10.1063/1.3407667
  • A. Sharma and V. Eswaran, “Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime,” Numer. Heat Transfer A, vol. 45, no. 3, pp. 247–269, 2004. doi:10.1080/10407780490278562
  • Y. Qian, D. D’Humières, and P. Lallemand, “Lattice BGK models for Navier–Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–484, 1992. doi:10.1209/0295-5075/17/6/001
  • P. Lallemand and L. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability,” Phys. Rev. E, vol. 61, no. 6, pp. 6546–6562, 2000. doi:10.1103/physreve.61.6546
  • S. Mishra, S. Panigrahy, and V. Ghatage, “Analysis of combined mode heat transfer in a porous medium using the lattice Boltzmann method,” Numer. Heat Transfer A, vol. 69, no. 10, pp. 1092–1105, 2016. doi:10.1080/10407782.2015.1125711
  • M. Hussain, Y. He, A. Mohamad, and W. Tao, “A new hybrid algorithm for numerical simulation of VOC emissions using single-layer and multilayer approaches,” Numer. Heat Transfer B, vol. 67, no. 3, pp. 211–230, 2014. doi:10.1080/10407790.2014.949568
  • Y. Ning, K. Premnath, and D. Patil, “Numerical study of the properties of the central moment lattice Boltzmann method,” Int. J. Numer. Methods Fluids, vol. 82, no. 2, pp. 59–90, 2015. doi:10.1002/fld.4208
  • A. Narasimhan, Essentials of Heat and Fluid Flow in Porous Media. New Delhi: Ane Books, 2013.
  • Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids, vol. 9, no. 6, pp. 1591–1598, 1997. doi:10.1063/1.869307
  • L. Luo, W. Liao, X. Chen, Y. Peng, and W. Zhang, “Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations,” Phys. Rev. E, vol. 83, no. 5, 2011. doi:10.1103/physreve.83.056710
  • J. Latt, B. Chopard, O. Malaspinas, M. Deville, and A. Michler, “Straight velocity boundaries in the lattice Boltzmann method,” Phys. Rev. E, vol. 77, no. 5, 2008. doi:10.1103/physreve.77.056703

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.