Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 3
179
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Finite difference lattice Boltzmann model based on the two-fluid theory for multicomponent fluids

&
Pages 250-267 | Received 25 May 2017, Accepted 23 Aug 2017, Published online: 25 Sep 2017

References

  • Y. Wang, C. Shu, and L. M. Yang, “An improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number,” J. Comput. Phys., vol. 302, pp. 41–58, 2015. DOI:10.1016/j.jcp.2015.08.049
  • M. Markl and C. Körner, “Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method,” J. Comput. Phys., vol. 301, pp. 230–246, 2015. DOI:10.1016/j.jcp.2015.08.033
  • S. Savithiri, P. Dhar, A. Pattamatta, and S. K. Das, “Particle–fluid interactivity reduces buoyancy-driven thermal transport in nanosuspensions: A multi-component Lattice Boltzmann approach,” Numer. Heat Transfer, Part A, vol. 70, pp. 260–281, 2016. DOI:10.1080/10407782.2016.1173458
  • H. Xu and Z. Dang, “Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming,” Appl. Energy, vol. 178, pp. 294–307, 2016. DOI:10.1016/j.apenergy.2016.06.007
  • Z. Dang and H. Xu, “Pore scale investigation of gaseous mixture flow in porous anode of solid oxide fuel cell,” Energy, vol. 107, pp. 295–304, 2016. DOI:10.1016/j.energy.2016.04.015
  • Y. Shi, G. H. Tang, and Y. Wang, “Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver,” J. Comput. Phys., vol. 314, pp. 228–243, 2016.
  • H. Rihab, N. Moudhaffar, B. N. Sassi, and P. Patrick, “An enthalpy-based lattice Boltzmann formulation for unsteady convection-diffusion heat transfer problems in heterogeneous media,” Numer. Heat Transfer, Part A, vol. 71, pp. 822–836, 2017. DOI:10.1080/10407782.2017.1309211
  • A. K. Gunstensen and D. H. Rothman, “Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method,” Europhys. Lett., vol. 18, pp. 157–161, 1992. DOI:10.1209/0295-5075/18/2/012
  • X. Shan and G. Doolen, “Multicomponent lattice-Boltzmann model with interparticle interaction,” J. Comput. Phys., vol. 81, pp. 379–393, 1995. DOI:10.1007/bf02179985
  • G. Doolen and X. Shan, “Diffusion in a multicomponent lattice Boltzmann equation model,” Phys. Rev. E, vol. 54, pp. 3614–3620, 1996. DOI:10.1103/physreve.54.3614
  • W. R. Osborn, J. M. Yeomans, and M. R. Swift, “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett., vol. 75, pp. 830–833, 1995. DOI:10.1103/physrevlett.75.830
  • E. Orlandini, W. R. Osborn, J. M. Yeomans, and M. R. Swift, “Lattice Boltzmann simulations of liquid–gas and binary fluid systems,” Phys. Rev. E, vol. 54, pp. 5041–5052, 1996. DOI:10.1103/physreve.54.5041
  • A. Lamura, G. Gonnella, and J. M. Yeomans, “A lattice Boltzmann model of ternary fluid mixtures,” Europhys. Lett., vol. 45, pp. 314–320, 1999. DOI:10.1209/epl/i1999-00165-4
  • Z. Li, J. Favier, U. D’Ortona, and S. Poncet, “An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows,” J. Comput. Phys., vol. 304, pp. 424–440, 2016. DOI:10.1002/fld.3884
  • H. Chen and X. Shan, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E, vol. 47, pp. 1815–1819, 1993. DOI:10.1103/physreve.47.1815
  • E. G. Flekkøy, “Lattice Bhatnagar–Gross–Krook models for miscible fluids,” Phys. Rev. E, vol. 47, pp. 4247–4257, 1993. DOI:10.1103/physreve.47.4247
  • V. Sofonea and R. F. Sekerka, “BGK models for diffusion in isothermal binary fluid systems,” Phys. A, vol. 299, pp. 494–520, 2001. DOI:10.1016/s0378-4371(01)00246-1
  • Z. Guo and T. S. Zhao, “Finite-difference-based lattice Boltzmann model for dense binary mixtures,” Phys. Rev. E, vol. 71, pp. 26701, 2005. DOI:10.1103/physreve.71.026701
  • L. Luo and S. S. Girimaji, “Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures,” Phys. Rev. E, vol. 67, pp. 36302, 2003. DOI:10.1103/physreve.67.036302
  • A. Xu, “Finite-difference lattice-Boltzmann methods for binary fluids,” Phys. Rev. E, vol. 71, pp. 66706, 2005. DOI:10.1103/physreve.71.066706
  • S. Arcidiacono, I. V. Karlin, J. Mantzaras, and C. E. Frouzakis, “Lattice Boltzmann model for the simulation of multicomponent mixtures,” Phys. Rev. E, vol. 76, pp. 46703, 2007. DOI:10.1103/physreve.76.046703
  • L. Luo and S. S. Girimaji, “Lattice Boltzmann model for binary mixtures,” Phys. Rev. E, vol. 66, pp. 35301, 2002. DOI:10.1103/physreve.66.035301
  • P. Asinari, “Viscous coupling based lattice Boltzmann model for binary mixtures,” Phys. Fluids, vol. 17, pp. 67102–67122, 2005. DOI:10.1063/1.1927567
  • M. E. McCracken and J. Abraham, “Lattice Boltzmann methods for binary mixtures with different molecular weights,” Phys. Rev. E, vol. 71, pp. 46704, 2005. DOI:10.1103/physreve.71.046704
  • L. Sirovich, “Kinetic modeling of gas mixtures,” Phys. Fluids, vol. 5, pp. 908–918, 1962. DOI:10.1063/1.1706706
  • A. S. Joshi, A. A. Peracchio, K. N. Grew, and W. K. S. Chiu, “Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries,” J. Phys. D, vol. 40, pp. 2961–2971, 2007. DOI:10.1088/0022-3727/40/9/044
  • T. S. Zhao and Z. Guo, “Explicit finite-difference lattice Boltzmann method for curvilinear coordinates,” Phys. Rev. E, vol. 67, pp. 66709, 2003. DOI:10.1103/physreve.67.066709
  • F. Nannelli and S. Succi, “The lattice Boltzmann equation on irregular lattices,” J. Stat. Phys., vol. 68, pp. 401–407, 1992. DOI:10.1007/bf01341755
  • Z. Guo, C. Zheng, and T. S. Zhao, “A lattice BGK scheme with general propagation,” J. Sci. Comput., vol. 16, pp. 569–585, 2001.
  • W. Shi, W. Shyy, and R. Mei, “Finite-difference-based lattice Boltzmann method for inviscid compressible flows,” Numer. Heat Transfer, Part B, vol. 40, pp. 1–21, 2001. DOI:10.1080/104077901300233578
  • R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed. New York/Chichester/Weinheim/Brisbane/Singapore/Toronto: John Wiley & Sons, Inc., 2006.
  • S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Clarendon Press, 2001.
  • Z. L. Guo, C. G. Zheng, and B. C. Shi, “Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method,” Chin. Phys., vol. 11, pp. 366–374, 2002. DOI:10.1088/1009-1963/11/4/310
  • C. Q. Tong, Y. L. He, G. H. Tang, Y. Wang, and Y. W. Liu, “Mass modified outlet boundary for a fully developed flow in the Lattice Boltzmann equation,” Int. J. Mod. Phys. C, vol. 18, pp. 1209–1221, 2007. DOI:10.1142/s0129183107011248
  • K. N. Grew, A. S. Joshi, and W. K. S. Chiu, “Direct internal reformation and mass transport in the solid oxide fuel cell anode: A pore-scale lattice Boltzmann study with detailed reaction kinetics,” Fuel Cells, vol. 10, pp. 1143–1156, 2010. DOI:10.1002/fuce.201000078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.