Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 5
197
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Lattice Boltzmann simulation of heat transfer with phase change in saturated soil during freezing process

, , &
Pages 361-376 | Received 21 Aug 2017, Accepted 26 Oct 2017, Published online: 27 Nov 2017

References

  • A. Sasaki, S. Aiba, and S. Fukusako, “Numerical study on freezing heat transfer in water-saturated porous media,” Numer. Heat Transfer, Part A, vol. 18, pp. 17–32, 1990.
  • M. Vitel, A. Rouabhi, M. Tijani, and F. Guérin, “Thermo-hydraulic modeling of artificial ground freezing: application to an underground mine in fracture sandstone,” Computer Geotech., vol. 75, pp. 80–92, 2016.
  • W. B. Yang, L. Kong, and Y. P. Chen, “Numerical evaluation on the effects of soil freezing on underground temperature variation of soil around ground heat exchangers,” Appl. Therm. Eng., vol. 75, pp. 259–269, 2015.
  • E. Pimentel, S. Papakonstantinou, and G. Anagnostou, “Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling,” Tunnelling Underground Space Technol., vol. 28, pp. 57–69, 2012.
  • L. Bronfenbrener and R. Bronfenbrener, “A temperature behavior of frozen soils: field experiments and numerical solution,” Cold Reg. Sci. Technol., vol. 79–80, pp. 84–90, 2012.
  • W. Y. Song, Y. N. Zhang, B. X. Li, and X. Fan, “A lattice Boltzmann model for heat and mass transfer phenomena with phase transformations in unsaturated soil during freezing process,” Int. J. Heat Mass Transfer, vol. 94, pp. 29–38, 2016.
  • X. P. Yu and W. J. Zhu, “Risk management of the restoration of Shanghai Metro line 4,” First International Symposium on Geotechnical Safety & Risk, Shanghai, China, pp. 707–713, 2007.
  • Y. Zhou and G. Q. Zhou, “Numerical simulation of coupled heat-fluid transport in freezing soils using finite volume method,” Heat Mass Transfer, vol. 46, pp. 989–998, 2010.
  • T. V. Hromadka, G. L. Guymon, and R. L. Berg, “Some approaches to modeling phase change in freezing soils,” Cold Reg. Sci. Technol., vol. 4, pp. 137–145, 1981.
  • X. Y. Shang, G. Q. Zhou, and X. Y. Bie, “Numerical simulation improvement of freezing soil’s temperature field,” J. China Univ. Min. Technol., vol. 34, pp. 179–183, 2005.
  • B. I. Pavel and A. A. Mohamad, “An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media,” Int. J. Heat Mass Transfer, vol. 47, pp. 4939–4952, 2004.
  • M. R. Wang, J. K. Wang, N. Pan, and S. Chen, “Mesoscopic predictions of the effective thermal conductivity for microscale random porous media,” Phys. Rev. E, vol. 75, pp. 036702–1–036702–10, 2007.
  • P. Majumdar, “Heat and mass transfer in composite desiccantporestructure for dehumidification,” Sol. Energy, vol. 62, pp. 1–10, 1998.
  • W. S. Jiaung, J. R. Ho, and C. P. Kuo, “Lattice Boltzmann method for the heat conduction problem with phase change,” Numer. Heat Transfer, Part B, vol. 39, no. 2, pp. 167–187, 2001.
  • D. Chatterjee and S. Chakraborty, “An enthalpy-source based lattice Boltzmann model for conduction dominated phase change of pure substances,” Int. J. Therm. Sci., vol. 48, pp. 552–559, 2008.
  • E. Semma, M. E. Ganaoui, R. Bennacer, and A. A. Mohamad, “Investigation of flows in solidification by using the lattice Boltzmann method,” Int. J. Therm. Sci., vol. 47, pp. 201–208, 2008.
  • C. Huber, A. Parmigiani, B. Chopard, M. Manga, and O. Bachmann, “Lattice Boltzmann model for melting with natural convection,” Int. J. Heat Fluid Flow, vol. 29, pp. 1469–1480, 2008.
  • E. A. Semma, M. E. Ganaoui, and R. Bennacer, “Lattice Boltzmann method for melting/solidification problems,” Comptes Rendus Mécanique, vol. 335, pp. 295–303, 2007.
  • M. Eshraghi and S. D. Felicelli, “An implicit lattice Boltzmann model for heat conduction with phase change,” Int. J. Heat Mass Transfer, vol. 55, pp. 2420–2428, 2012.
  • Z. L. Guo and T. S. Zhao, “A lattice Boltzmann model for convection heat transfer in porous media,” Numer. Heat Transfer, Part B, vol. 47, pp. 157–177, 2005.
  • D. Y. Gao and Z. Q. Chen, “Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media,” Int. J. Therm. Sci., vol. 50, pp. 493–501, 2011.
  • Q. Liu and Y. L. He, “Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media,” Phys. A, vol. 438, pp. 94–106, 2015.
  • M. R. Wang, N. Pan, J. K. Wang, and S. Chen, “Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media,” J. Colloid Interface Sci., vol. 311.pp. 562–570, 2007.
  • J. K. Wang, M. R. Wang, and Z. X. Li, “A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer,” Int. J. Therm. Sci., vol. 46, pp. 228–234, 2007.
  • T. Zhang, D. L. Li, D. T. Lu, and J. Q. Yang, “Research on the reconstruction method of porous media using multiple-point geostatistics,” Sci. China: Phys., Mech. Astron., vol. 53, pp. 122–134, 2010.
  • P. Z. Wong, J. Koplik, and J. P. Tomanic, “Conductivity and permeability of rocks,” Phys. Rev. B, vol. 30, pp. 6606–6614, 1984.
  • A. Riyadh, K. Thompson, and C. S. Willson, “Comparison of network generation techniques for unconsolidated porous media,” Soil Sci. Soc. Am. J., vol. 67, pp. 1687–1700, 2003.
  • D. H. Zhang, H. Yang, and M. H. Shi, “Important problems of fractal model in porous media,” J. Southeast Univ. (Natural Sci. Ed.), vol. 32, pp. 692–697, 2002.
  • M. R. Wang and N. Pan, “Numerical analyses of effective dielectric constant of multiphase microporous media,” J. Appl. Phys., vol. 101, pp. 114102-1–114102-8, 2007.
  • R. M. Li, S. Y. Liu, L. Fang, and D. U. Yan-Jun, “Micro-structure of clay generated by quartet structure generation set,” J. Zhejiang Univ. Eng. Sci., vol. 44, pp. 1897–1901, 2010.
  • D. Guan, J. H. Wu, and L. Jing, “A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set,” J. Alloys Compd., vol. 626, pp. 29–34, 2015.
  • M. C. Sukop and D. T. Thorne, Lattice Boltzmann modeling: An introduction for geoscientists and engineers. Berlin: Springer Verlag, 2006, pp. 1–4.
  • A. A. Mohamad, Lattice Boltzmann method: fundamentals and engineering applications with computer codes. London: Springer-Verlag, 2011, pp. 1–3.
  • Y. H. Qian, D. D’Humières, and P. Lallemand, “Lattice BGK model for Navier-Stokes equation,” Europhys. Lett., vol. 17, pp. 552–559, 1992.
  • Z. L. Guo, C. G. Zheng, and B. C. Shi, “Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method,” Chin. Phys., vol. 11, pp. 366–374, 2002.
  • L. J. Su, Y. J. Zhang, and T. X. Wang, “Investigation on permeability of sands with different particle sizes,” Rock Soil Mechanics, vol. 35, pp. 1289–1294, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.