Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 6
68
Views
0
CrossRef citations to date
0
Altmetric
Articles

Extending a low-order upwind-biased scheme to solve turbulent flames using detailed chemistry model

ORCID Icon & ORCID Icon
Pages 343-362 | Received 24 Mar 2018, Accepted 22 Jun 2018, Published online: 24 Oct 2018

References

  • Z. H. Yan, “Parallel computation of turbulent combustion and flame spread in fires,” Numer. Heat Transf. Part B: Fundam., vol. 39, no. 6, pp. 585–602, 2001.
  • Z. H. Yan, “Parallel computation of turbulent combustion and flame spread in fires,” Numer. Heat Transf. Part B: Fundam., vol. 41, no. 2, pp. 191–208, 2002.
  • S. Kang and Y. Kim, “Parallel unstructured-grid finite-volume method for turbulent nonpremixed flames using the flamelet model,” Numer. Heat Transf. Part B: Fundam., vol. 43, no. 6, pp. 525–547, 2003.
  • Z. Ren and S. B. Pope, “Second-order splitting schemes for a class of reactive systems,” J. Comput. Phys., vol. 227, no. 17, pp. 8165–8176, 2008.
  • T. Lu and C. K. Law, “Toward accommodating realistic fuel chemistry in large-scale computations,” Prog. Ener. Combust. Sci., vol. 35, no. 2, pp. 192–215, 2009.
  • Z. Ren, C. Xu, T. Lu, and M. A. Singer, “Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations,” J. Comput. Phys., vol. 263, pp. 19–36, 2014.
  • J. L. Ziegler, R. Deiterding, J. E. Shepherd, and D. I. Pullin, “An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry,” J. Comput. Phys., vol. 230, no. 20, pp. 7598–7630, 2011.
  • B. Savard, Y. Xuan, B. Bobbitt, and G. Blanquart, “A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry,” J. Comput. Phys., vol. 295, pp. 740–769, 2015.
  • A. C. Y. Yuen, G. H. Yeoh, V. Timchenko, and T. Barber, “LES and multi-step chemical reaction in compartment fires,” Numer. Heat Transf. Part A: Appl., vol. 68, no. 7, pp. 711–736, 2015.
  • E. M. Orbegoso, L. F. F. da Silva, and R. Serfaty, “Comparative study of thermal radiation properties models in turbulent non-premixed sooting combustion,” Numer. Heat Transf. Part A: Appl., vol. 69, no. 2, pp. 166–179, 2016.
  • C. Sui, F. Yang, and W. Kong, “Large eddy simulation of methane/air lifted flame with hot co-flow,” Numer. Heat Transf. Part A: Appl., vol. 70, no. 3, pp. 282–292, 2016.
  • M. F. Azarkhavarani, B. Lessani, and S. Tabejamaat, “Artificial compressibility method on half-staggered grid for laminar radiative diffusion flames in axisymmetric coordinates,” Numer. Heat Transf. Part B: Fundam., vol. 72, no. 5, pp. 392–407, 2017.
  • W. Yang and J. Zhang, “Simulation of swirl-stabilized turbulent partially premixed combustion,” Numer. Heat Transf. Part A: Appl., vol. 71, no. 2, pp. 189–201, 2017.
  • L. Ma and Y. Yu, “Numerical and experimental analyses of the characteristics of burning jets of base bleed ignited in the atmospheric environment,” Numer. Heat Transf. Part A: Appl., vol. 71, no. 11, pp. 1141–1158, 2017.
  • G. D. Raithby and K. E. Torrance, “Upstream-weighted differencing schemes and their application to elliptic problems involving fluid flow,” Comput. Fluids, vol. 2, no. 2, pp. 191–206, 1974.
  • G. D. Raithby, “A critical evaluation of upstream differencing applied to problems involving fluid flow,” Computer Methods Appl. Mech. Eng., vol. 9, no. 1, pp. 75–103, 1976.
  • G. D. Raithby, “Skew upstream differencing schemes for problems involving fluid flow,” Computer Methods Appl. Mech. Eng., vol. 9, no. 2, pp. 153–164, 1976.
  • M. A. Leschziner, “Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows,” Computer Methods Appl. Mech. Eng., vol. 23, no. 3, pp. 293–312, 1980.
  • J. Zhu and M. A. Leschziner, “A local oscillation-damping algorithm for higher-order convection schemes,” Computer Methods Appl. Mech. Eng., vol. 67, no. 3, pp. 355–366, 1988.
  • F.-S. Lien and M. A. Leschziner, “A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure,” J. Fluids Eng., vol. 115, no. 4, pp. 717–725, 1993.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. New York: Longman Scientific & Technical, 1995.
  • C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA J., vol. 21, no. 11, pp. 1525–1532, 1983.
  • G. E. Schneider and M. J. Raw, “Control volume finite-element method for heat transfer and fluid flow using colocated variables-1. Computational procedure,” Numer. Heat Transf., vol. 11, no. 4, pp. 363–390, 1987.
  • M. Darbandi and M. Ghafourizadeh, “Extending a hybrid finite-volume-element method to solve laminar diffusive flame,” Numer. Heat Transf. Part B: Fundam., vol. 66, no. 2, pp. 181–210, 2014.
  • M. Darbandi and M. Ghafourizadeh, “Solving turbulent diffusion flame in cylindrical frame applying an improved advective kinetics scheme,” Theoret. Comput. Fluid Dyn., vol. 29, no. 5–6, pp. 413–431, 2015. –December
  • Z. Qin et al., “Combustion chemistry of propane: a case study of detailed reaction mechanism optimization,” Proc. Combust. Inst., vol. 28, no. 2, pp. 1663–1669, 2000.
  • J. H. Kent and D. Honnery, “Soot and mixture fraction in turbulent diffusion flames,” Combust. Sci. Technol., vol. 54, no. 1–6, pp. 383–397, 1987.
  • R. M. Woolley, M. Fairweather, and Yunardi, “Conditional moment closure modelling of soot formation in turbulent, non-premixed methane and propane flames,” Fuel, vol. 88, pp. 393–407, 2009.
  • S. B. Pope, Turbulent Flows. Cambridge: Cambridge University Press, 2000.
  • M. Darbandi and G. E. Schneider, “Momentum variable procedure for solving compressible and incompressible flows,” AIAA J., vol. 35, no. 12, pp. 1801–1805, 1997.
  • M. Darbandi, E. Roohi, and V. Mokarizadeh, “Conceptual linearization of euler governing equations to solve high speed compressible flow using a pressure-based method,” Numer. Methods Partial Differ. Eq., vol. 24, no. 2, pp. 583–604, 2008.
  • M. A. Leschziner and W. Rodi, “Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations,” J. Fluids Eng., vol. 103, no. 2, pp. 352–360, 1981.
  • S. Fu, P. G. Huang, B. E. Launder, and M. A. Leschziner, “A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl,” J. Fluids Eng., vol. 110, no. 2, pp. 216–221, 1988.
  • T. F. Miller and F. W. Schmidt, “Use of a pressure-weighted interpolation method for the solution of the incompressible navier-stokes equations on a non-staggered grid system,” Numer. Heat Transf., vol. 14, pp. 213–233, 1988.
  • M. Peric, R. Kessler, and G. Scheuere, “Comparison of finite-volume numerical methods with staggered and colocated grids,” Comput. Fluids, vol. 16, no. 4, pp. 389–403, 1988.
  • C. R. Swaminathan and V. R. Voller, “Streamline upwind scheme for control-volume finite elements, part I. Formulations,” Numer. Heat Transf. Part B: Fundam., vol. 22, no. 1, pp. 95–107, 1992.
  • C. R. Swaminathan and V. R. Voller, “Streamline upwind scheme for control-volume finite elements, part II. Implementation and comparison with the SUPG finite-element scheme,” Numer. Heat Transf. Part B: Fundam., vol. 22, no. 1, pp. 109–124, 1992.
  • D. Pan and C.-H. Chang, “Upwind finite-volume method for natural and forced convection,” Numer. Heat Transf. Part B: Fundam., vol. 25, no. 2, pp. 177–191, 1994.
  • C. Masson, H. J. Saabas, and B. R. Baliga, “Co-located equal-order control-volume finite element method for two-dimensional axisymmetric incompressible fluid flow,” Int. J. Numer. Methods Fluids, vol. 18, no. 1, pp. 1–26, 1994.
  • P. H. Chiu, T. W. H. Sheu, and R. K. Lin, “Development of a dispersion relation-preserving upwinding scheme for incompressible navier–stokes equations on NonStaggered grids,” Numer. Heat Transf. Part B: Fundam., vol. 48, no. 6, pp. 543–569, 2005.
  • G. E. Schneider and S. M. H. Karimian, “Advances in control-volume-based finite-element methods for compressible flows,” Comput. Mech., vol. 14, no. 5, pp. 431–446, 1994.
  • M. Darbandi and G. E. Schneider, “Analogy-based method for solving compressible and incompressible flows,” J. Thermophys. Heat Transf., vol. 12, no. 2, pp. 239–247, 1998.
  • M. Darbandi and S. M. Bostandoost, “A new formulation toward unifying the velocity role in collocated variable arrangement,” Numer. Heat Transf. Part B: Fundam., vol. 47, no. 4, pp. 361–382, 2005.
  • M. Darbandi and A. Naderi, “Multiblock hybrid grid finite volume method to solve flow in irregular geometries,” Computer Methods Appl. Mech. Eng., vol. 196, no. 1-3, pp. 321–336, 2006.
  • M. Darbandi and S. Vakilipour, “Developing implicit pressure-weighted upwinding scheme to calculate steady and unsteady flows on unstructured grids,” Int. J. Numer. Methods Fluids, vol. 56, no. 2, pp. 115–141, 2008.
  • A. Naderi, M. Darbandi, and M. Taeibi-Rahni, “Developing a unified FVE-ALE approach to solve unsteady fluid flow with moving boundaries,” Int. J. Numer. Methods Fluids, vol. 63, pp. 40–68, 2010.
  • P. Hanafizadeh, M. H. Saidi, M. Darbandi, and A. Kebriaee, “Numerical simulation of two-phase flow in airlift pumps using the physical influence scheme,” Prog. Comput. Fluid Dyn., vol. 10, no. 3, pp. 186–194, 2010.
  • H. Alisadeghi and S. M. H. Karimian, “Different modelings of cell-face velocities and their effects on the pressure-velocity coupling, accuracy and convergence of solution,” Int. J. Numer. Methods Fluids, vol. 65, no. 8, pp. 969–988, 2011.
  • H. Alisadeghi and S. M. H. Karimian, “Comparison of different solution algorithms for collocated method of MCIM to calculate steady and unsteady incompressible flows on unstructured grids,” Comput. Fluids, vol. 46, no. 1, pp. 94–100, 2011.
  • F. S. V. Hurtado and C. R. Maliska, “A family of positive flow-weighted advection schemes for element-based finite-volume methods,” Numer. Heat Transf. Part B: Fundam., vol. 62, no. 2–3, pp. 113–140, 2012.
  • E. O. B. Ogedengbe, K. L. Olaitan, and G. F. Naterer, “Tri-quadratic skew upwind scheme for scalar advection in a control-volume-based finite element method,” Numer. Heat Transf. Part B: Fundam., vol. 71, no. 6, pp. 485–505, 2017.
  • M. Darbandi and V. Mokarizadeh, “A modified pressure-based algorithm to solve flow fields with shock and expansion waves,” Numer. Heat Transf. Part B: Fundam., vol. 46, no. 5, pp. 497–504, 2004.
  • M. Darbandi and M. Ghafourizadeh, “A new bi-implicit finite volume element method for coupled systems of turbulent flow and aerosol-combustion dynamics,” J. Coupled Syst. Multis. Dyn., vol. 4, no. 1, pp. 43–59, 2016.
  • D. Elkaim, M. Reggio, and R. Camarero, “Numerical solution of reactive laminar flow by a control-volume based finite-element method and the vorticity-streamfunction formulation,” Numer. Heat Transf. Part B: Fundam., vol. 20, no. 2, pp. 223–240, 1991.
  • D. Elkaim, M. Reggio, and R. Camarero, “Control volume finite-element solution of a confined turbulent diffusion flame,” Numer. Heat Transf. Part A: Appl., vol. 23, no. 3, pp. 259–279, 1993.
  • M. Darbandi, S. Vakili, and G. E. Schneider, “Efficient multilevel restriction-prolongation expressions for hybrid finite volume element method,” Int. J. Comput. Fluid Dyn., vol. 22, no. 1-2, pp. 29–38, 2008.
  • B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, “Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames,” Combust. Flame, vol. 114, no. 1-2, pp. 119–148, 1998.
  • S.-K. Kim, S. Kang, and Y. Kim, “Eulerian particle flamelet modeling for combustion processes of bluff-body stabilized methanol-air turbulent nonpremixed flames,” J. Mech. Sci. Technol., vol. 20, no. 9, pp. 1459–1474, 2006.
  • J. P. V. Doormaal and G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transf., vol. 7, no. 2, pp. 147–163, 1984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.