Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 1
246
Views
16
CrossRef citations to date
0
Altmetric
Articles

Solution of incompressible fluid flow problems with heat transfer by means of an efficient RBF-FD meshless approach

&
Pages 19-42 | Received 09 Nov 2018, Accepted 04 Feb 2019, Published online: 23 Apr 2019

References

  • G. Liu, Meshfree Methods: Moving beyond the Finite Element Method. Boca Raton, FL: CRC Press, 2009.
  • H. Li and S. Mulay, Meshless Methods and Their Numerical Properties. Boca Raton, FL: CRC Press, 2013.
  • G. Fasshauer, “Solving partial differential equations by collocation with radial basis functions,” presented at the Proceedings of the 3rd International Conference on Curves and Surfaces, Chamonix-Mont-Blanc, 1996.
  • C. Franke and R. Schaback, “Solving partial differential equations by collocation using radial basis functions,” Appl. Math. Comput., vol. 93, no. 1, pp. 73–82, 1998. DOI: 10.1016/S0096-3003(97)10104-7.
  • M. Golberg, C. Chen, and H. Bowman, “Some recent results and proposals for the use of radial basis functions in the BEM,” Eng. Anal. Bound. Elem., vol. 23, no. 4, pp. 285–296, 1999. DOI: 10.1016/S0955-7997(98)00087-3.
  • E. Larsson and B. Fornberg, “A numerical study of some radial basis function based solution methods for elliptic PDEs,” Comput. Math. Appl., vol. 46, no. 5, pp. 891–902, 2003. DOI: 10.1016/S0898-1221(03)90151-9.
  • S. Sarra and E. Kansa, “Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations,” Adv. Comput. Mech., vol. 2, pp. 1–206, 2009.
  • B. Fornberg and N. Flyer, “Solving PDEs with radial basis functions,” Acta Numer., vol. 24, pp. 215–258, 2015. DOI: 10.1017/S0962492914000130.
  • M. Li, C. S. Chen, and C. H. Tsai, “Meshless method based on radial basis functions for solving parabolic partial differential equations with variable coefficients,” Numer. Heat Transfer B Fund., vol. 57, no. 5, pp. 333–347, 2010. DOI: 10.1080/10407790.2010.481489.
  • E. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations,” Comput. Math. Appl., vol. 19, no. 8, pp. 147–161, 1990. DOI: 10.1016/0898-1221(90)90271-K.
  • C. Lee, X. Liu, and S. Fan, “Local multiquadric approximation for solving boundary value problems,” Comput. Mech., vol. 30, no. 5, pp. 396–409, 2003. DOI: 10.1007/s00466-003-0416-5.
  • B. Šarler and R. Vertnik, “Meshfree explicit local radial basis function collocation method for diffusion problems,” Comput. Math. Appl., vol. 51, no. 8, pp. 1269–1282, 2006. DOI: 10.1016/j.camwa.2006.04.013.
  • G. Chandhini and Y. Sanyasiraju, “Local RBF-FD solutions for steady convection-diffusion problems,” Int. J. Numer. Meth. Eng., vol. 72, no. 3, pp. 352–378, 2007. DOI: 10.1002/nme.2024.
  • E. Divo and A. J. Kassab, “Localized meshless modeling of Natural-Convective viscous flows,” Numer. Heat Transfer B Fund., vol. 53, no. 6, pp. 487–509, 2008. DOI: 10.1080/10407790802083190.
  • J. Sun, H.-L. Yi, and H.-P. Tan, “Local RBF meshless scheme for coupled radiative and conductive heat transfer,” Numer. Heat Transfer A Appl., vol. 69, no. 12, pp. 1390–1404, 2016. DOI: 10.1080/10407782.2016.1139959.
  • T. T. V. Le, N. Mai-Duy, K. Le-Cao, and T. Tran-Cong, “A time discretization scheme based on integrated radial basis functions for heat transfer and fluid flow problems,” Numer. Heat Transfer B Fund., vol. 74, no. 2, pp. 498–518, 2018. DOI: 10.1080/10407790.2018.1515329.
  • K. Le-Cao, N. Mai-Duy, and T. Tran-Cong, “An effective integrated-RBFN Cartesian-grid discretization for the stream functionvorticitytemperature formulation in nonrectangular domains,” Numer. Heat Transfer B Fund., vol. 55, no. 6, pp. 480–502, 2009. DOI: 10.1080/10407790902827470.
  • M. Q. Wang, C. X. Wang, M. Li, and C. S. Chen, “A numerical scheme based on FD-RBF to solve Fractional-Diffusion inverse heat conduction problems,” Numer. Heat Transfer A Appl., vol. 68, no. 9, pp. 978–992, 2015. DOI: 10.1080/10407782.2014.986376.
  • N. Li, Z. Tan, and X. Feng, “Novel two-level discretization method for high dimensional semilinear elliptic problems base on RBF-FD scheme,” Numer Heat Transfer B Fund., vol. 72, no. 5, pp. 349–360, 2017.
  • G. Wright and B. Fornberg, “Scattered node compact finite difference-type formulas generated from radial basis functions,” J. Comput. Phys., vol. 212, no. 1, pp. 99–123, 2006. DOI: 10.1016/j.jcp.2005.05.030.
  • B. Šarler, “From global to local radial basis function collocation method for transport phenomena,” in Computational Methods in Applied Sciences, V. Leitão, C. Alves, and C. Duarte, Eds. Springer: Dordrecht, The Netherlands, 2007. Adv. Meshfree Tech., vol. 5, pp. 257–282, 2007.
  • G. Yao, Siraj-Ul-Islam, and B. Šarler, “Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions,” Eng. Anal. Bound. Elem, vol. 36, no. 11, pp. 1640–1648, 2015.
  • J. Waters, and D. Pepper, “Global versus localized RBF meshless methods for solving incompressible fluid flow with heat transfer,” Numer. Heat Transfer B Fund., vol. 68, no. 3, pp. 185–203, 2015. DOI: 10.1080/10407790.2015.1021590.
  • E. Divo and A. Kassab, “An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer,” J. Heat Transfer, vol. 129, no. 2, pp. 124–136, 2007. DOI: 10.1115/1.2402181.
  • G. Kosec and B. Šarler, “Solution of thermo-fluid problems by collocation with local pressure correction,” Int. J. Numer. Methods Heat Fluid Flow, vol. 18, no. 7/8, pp. 868–882, 2008. DOI: 10.1108/09615530810898999.
  • P. Chinchapatnam, K. Djidjeli, P. Nair, and M. Tan, “A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations,” presented at the Proceedings of the IMechE, Part M. J. Eng. Maritime Environ., vol. 223, no. 3, pp. 275–290, 2009. DOI: 10.1243/14750902JEME151.
  • G. Kosec, and B. Šarler, “Solution of a low prandtl number natural convection benchmark by a local meshless method,” Int. J. Numer. Methods Heat Fluid Flow, vol. 23, no. 1, pp. 189–204, 2013. DOI: 10.1108/09615531311289187.
  • Z. Wang, Z. Huang, W. Zhang, and G. Xi, “A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations,” Numer. Heat Transfer B Fund., vol. 67, no. 4, pp. 320–337, 2015. DOI: 10.1080/10407790.2014.955779.
  • A. Chorin, “Numerical solution of the Navier-Stokes equations,” Math. Comput., vol. 22, no. 104, pp. 745–762, 1968. DOI: 10.1090/S0025-5718-1968-0242392-2.
  • R. Zamolo, and E. Nobile, “Two algorithms for fast 2D node generation: Application to RBF meshless discretization of diffusion problems and image halftoning,” Comput. Math. Appl., vol. 75, no. 12, pp. 4305–4321, 2018. DOI: 10.1016/j.camwa.2018.03.031.
  • R. Finkel and J. Bentley, “Quad trees a data structure for retrieval on composite keys,” Acta Inform., vol. 4, no. 1, pp. 1–9, 1974. DOI: 10.1007/BF00288933.
  • R. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proc. Soc. Inform. Display, vol. 17, no. 2, pp. 75–77, 1976.
  • V. Bayona, N. Flyer, B. Fornberg, and G. Barnett, “On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs,” J. Comput. Phys., vol. 332, pp. 257–273, 2017. DOI: 10.1016/j.jcp.2016.12.008.
  • R. Hardy, “Multiquadric equations of topography and other irregular surfaces,” J. Geophys. Res., vol. 76, no. 8, pp. 1905–1915, 1971. DOI: 10.1029/JB076i008p01905.
  • R. Franke, “A Critical Comparison of Some Methods for Interpolation of Scattered Data (Technical Report),” Monterey, CA: Naval Postgraduate School, Technical Report NPS-53-79-003, 1980.
  • R. Franke, “Scattered data interpolation: tests of some methods,” Math. Comput., vol. 38, no. 157, pp. 181–200, 1982. DOI: 10.1090/S0025-5718-1982-0637296-4.
  • N. Flyer, B. Fornberg, V. Bayona, and G. Barnett, “On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy,” J. Comput. Phys., vol. 321, pp. 21–38, 2016. DOI: 10.1016/j.jcp.2016.05.026.
  • G. Fasshauer, “Meshfree approximation methods with Matlab,” in Interdisciplinary Mathematical Sciences, vol. 6, ch. 9: Conditionally Positive Definite Radial Functions. Singapore: World Scientific, 2007.
  • R. Horn, and C. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1990.
  • S. Armfield, “Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids,” Comput. Fluids, vol. 20, no. 1, pp. 1–17, 1991. DOI: 10.1016/0045-7930(91)90023-B.
  • H. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comp., vol. 13, no. 2, pp. 631–644, 1992. DOI: 10.1137/0913035.
  • Y. Saad, “Iterative methods for sparse linear systems,” in Preconditioning Techniques, 2nd ed., ch. 10. Philadelphia, PA: SIAM, 2003.
  • E. Cuthill, and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in Proceedings of the 1969 24th National Conference, ACM ’69. New York, NY: ACM, pp. 157–172, 1969.
  • R. J. A. Janssen, and R. A. W. M. Henkes, “Accuracy of finite-volume discretizations for the bifurcating natural-convection flow in a square cavity,” Numer Heat Transfer B Fund., vol. 24, no. 2, pp. 191–207, 1993. DOI: 10.1080/10407799308955889.
  • E. Nobile, “Simulation of time-dependent flow in cavities with the additive-correction multigrid method, part II: applications,” Numer Heat Transfer B Fund., vol. 30, no. 3, pp. 351–370, 1996. DOI: 10.1080/10407799608915087.
  • A. Fortin, M. Jardak, J. Gervais, and R. Pierre, “Localization of hopf bifurcations in fluid flow problems,” Int. J. Numer. Methods Fluids, vol. 24, no. 11, pp. 1185–1210, 1997. DOI: 10.1002/(SICI)1097-0363(19970615)24:11<1185::AID-FLD535>3.3.CO;2-O.
  • C.-H. Bruneau and M. Saad, “The 2D lid-driven cavity problem revisited,” Comput. Fluids, vol. 35, no. 3, pp. 326–348, 2006. DOI: 10.1016/j.compfluid.2004.12.004.
  • S. Paolucci and D. R. Chenoweth, “Transition to chaos in a differentially heated vertical cavity,” J. Fluid Mech., vol. 201, no. 1, pp. 379, 1989. DOI: 10.1017/S0022112089000984.
  • D. Contrino, P. Lallemand, P. Asinari, and L.-S. Luo, “Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers,” J. Comput. Phys., vol. 275, pp. 257–272, 2014. DOI: 10.1016/j.jcp.2014.06.047.
  • P. Le Quéré, “Accurate solutions to the square thermally driven cavity at high rayleigh number,” Comput. Fluids, vol. 20, no. 1, pp. 29–41, 1991. DOI: 10.1016/0045-7930(91)90025-D.
  • J.-H. Chen, W. G. Pritchard, and S. J. Tavener, “Bifurcation for flow past a cylinder between parallel planes,” J. Fluid Mech., vol. 284, no. 1, pp. 23–41, 1995. DOI: 10.1017/S0022112095000255.
  • L. Zovatto and G. Pedrizzetti, “Flow about a circular cylinder between parallel walls,” J. Fluid Mech., vol. 440, pp. 1–25, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.