Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 1
186
Views
7
CrossRef citations to date
0
Altmetric
Articles

High-order compact difference scheme of 1D nonlinear degenerate convection–reaction–diffusion equation with adaptive algorithm

&
Pages 43-66 | Received 19 Oct 2018, Accepted 02 Mar 2019, Published online: 18 Apr 2019

References

  • W. Dai, H. Yu, and R. Nassar, “A fourth-order compact finite-difference scheme for solving a 1D Pennes’ bioheat transfer equation in a triple-layered skin structure,” Numer. Heat Transf., B, vol. 46, no. 5, pp. 447–461, 2004. DOI:10.1080/104077990503014.
  • W. Dai and C. Johnson, “A new accurate finite-difference scheme for the thermal analysis of one-dimensional microspheres exposed to ultrashort-pulsed lasers,” Numer. Heat Transf., B, vol. 57, no. 4, pp. 241–259, 2010. DOI:10.1080/10407790.2010.489878.
  • Q. Shao, M. Fahs, A. Younes, and A. Makradi, “A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media,” Numer. Heat Transf., B, vol. 61, pp. 1–23, 2015.
  • Q. Ren and C. Chan, “Numerical study of double-diffusive convection in a vertical cavity with Soret and Dufour effects by lattice Boltzmann Method on GPU,” Int. J. Heat Mass Transf., vol. 93, pp. 538–553, 2016. DOI:10.1016/j.ijheatmasstransfer.2015.10.031.
  • H. Rihab, N. Moudhaffar, B. Sassi, and P. Patrick, “An enthalpy-based lattice Boltzmann formulation for unsteady convection-diffusion heat transfer problems in heterogeneous media,” Numer. Heat Transf., A, vol. 71, no. 8, pp. 822–836, 2017. DOI:10.1080/10407782.2017.1309211.
  • H. Kawarada, “On solutions of initial-boundary value problem for ut=uxx+1/(1−u),” Pub. Res. Institute Math. Sci., vol. 10, pp. 729–736, 1975.
  • M. A. Beauregard and Q. Sheng, “An adaptive splitting approach for the quenching solution of reaction-diffusion equations over non-uniform grids,” J. Comput. Appl. Math., vol. 241, pp. 30–44, 2013. DOI:10.1016/j.cam.2012.10.005.
  • K. Deng and H. Levine, “On the Blow-Up of ut at quenching,” Proc. American Math. Soc., vol. 106, pp. 1049–1056, 1989. DOI:10.1090/S0002-9939-1989-0969520-0.
  • H. Levine, “Quenching, non-quenching and beyond quenching for solutions of some parabolic equations,” Ann. Math. Pure Appl., vol. 4, pp. 243–260, 1989. DOI:10.1007/BF01765943.
  • Q. Dai and Y. Gu, “Two remarks on quenching phenomenon for semi-linear parabolic equations,” Chin. Sci. Bullet., vol. 42, no. 3, pp. 258–259, 1997. DOI:10.1007/BF02882451.
  • Z. Ma. “Quenching problems of degenerate functional reaction-diffusion equation,” Ann. Differ. Eqs., vol. 22, pp. 333–338, 2006.
  • K. Liang, P. Lin, and R. Tan, “Numerical solution of quenching problems using mesh-dependent variable temporal steps,” Appl. Numer. Math., vol. 57, no. 5–7, pp. 791–800, 2007. DOI:10.1016/j.apnum.2006.07.018.
  • N. Ozalp, B. Selcuk. “Blow up and quenching for a problem with nonlinear boundary conditions,” Elec. J. Differ. Eq., vol. 2015, no. 192, pp. 1–11, 2015.
  • N. Sun, “The quenching of solutions of a reaction-diffusion equation with free boundaries,” Bull. Austral. Math. Soc., vol. 94, pp. 110–120, 2016. DOI:10.1017/S0004972715001549.
  • Q. Sheng and Y. Ge, “A numerical endeavor with nonlinear Kawarada equations,” Dynam. Syst. Appl., vol. 25, pp. 543–556, 2016.
  • H. Ramezanzadeh, A. Ramiar, and M. Yousefifard, “Numerical investigation into coolant liquid velocity effect on forced convection quenching process,” Appl. Thermal Eng., vol. 122, pp. 253–267, 2017. DOI:10.1016/j.applthermaleng.2017.05.008.
  • Q. Wang, “Quenching phenomenon for a parabolic MEMS equation,” Chin. Ann. Math. Series B, vol. 39, no. 1, pp. 129–144, 2018. DOI:10.1007/s11401-018-1056-6.
  • Z. Yu, B. Wang, and Y. Wang, “A simplified model of local flame structure in thin reaction zones regime,” Numer. Heat Transf., B, vol. 73, no. 6, pp. 386–398, 2018. DOI:10.1080/10407790.2018.1494935.
  • Q. Sheng and A. Q. M. Khaliq, “A compound adaptive approach to degenerate nonlinear quenching problems,” Numer. Meth. Partial Differ. Eq., vol. 15, no. 1, pp. 29–47, 1999. DOI:10.1002/(SICI)1098-2426(199901)15:1<29::AID-NUM2>3.0.CO;2-L.
  • Q. Sheng and H. Cheng, “An adaptive grid method for degenerate semi-linear quenching problems,” Comput. Math. Appl., vol. 39, no. 9–10, pp. 57–71, 2000. DOI:10.1016/S0898-1221(00)00086-9.
  • Q. Sheng and A. Q. M. Khliq, “Adaptive algorithms of convection-diffusion-reaction equations of quenching type,” Dynam. Continuous, Discrete Impulsive Syst., vol. 8, pp. 129–148, 2001.
  • Q. Zhou, et.al. “Quenching of a semi-linear diffusion equation with convection and reaction,” Electron. J. Differ. Eq., vol. 2015, pp. 1–7, 2015.
  • Y. Ge, Z. Cai, and Q. Sheng, “A compact adaptive approach for degenerate singular reaction - diffusion equations,” Numer. Meth. Partial Differ. Eq., vol. 34, no. 4, pp. 1166–1187, 2018. DOI:10.1002/num.22250.
  • W. Liao, “A compact high-order finite difference method for unsteady convection-diffusion equations,” Intern. J. Comput. Methods. Eng. Sci. Mech., vol. 13, no. 3, pp. 135–145, 2012.
  • F. Zhao, J. Chen, and Y. Ge, “A high order compact difference scheme on non-uniform grids for the 1D unsteady convection diffusion equation,” J. Xi’an Univ. Technol., vol. 29, pp. 475–480 2013 (In Chinese).
  • W. Huang, “Unconditionally stable high-order time integration for moving mesh finite difference solution of linear convection–diffusion equations,” Inter. J. Comput. Math., vol. 92, no. 6, pp. 1180–1203, 2015. DOI:10.1080/00207160.2014.927447.
  • A. A. Salama and D. G. Al-Amery, “A higher order uniformly convergent method for singularly perturbed delay parabolic partial differential equations,” Inter. J. Comput. Math., vol. 94, no. 9–10, pp. 2520–2546, 2017. 10.1080/002071160.2017.1284317.
  • H. Babaee and S. Acharya, “A hybrid staggered/semi-staggered finite-difference algorithm for solving time-dependent incompressible Navier-Stokes equations on curvilinear grids,” Numer. Heat Transf., B, vol. 65, no. 1, pp. 1–26, 2014. DOI:10.1080/10407790.2013.827012.
  • G. Juncu et al., “Preconditioned conjugate gradient and multigrid methods for numerical solution of multicomponent mass transfer equations II. Convection-diffusion-reaction equations,” Numer. Heat Transf., A, vol. 66, no. 11, pp. 1297–1319, 2014. DOI:10.1080/10407782.2014.915669.
  • Z. Wang et al., “A meshless local Radial basis function method for two-dimensional incompressible Navier-Stokes equations,” Numer. Heat Transf., B, vol. 67, no. 4, pp. 320–337, 2015. DOI:10.1080/10407790.2014.955779.
  • M. Rostamian and A. Shahrezaee, “A meshless method to the numerical solution of an inverse reaction-diffusion-convection problem,” Inter. J. Comput. Math., vol. 94, no. 3, pp. 597–619, 2017. DOI:10.1080/00207160.2015.1119816.
  • Z. Chen, Z. Li, X. Wu, and W. Tao, “A meshless local Petrov–Galerkin approach for solving the convection-dominated problems based on the streamline upwind idea and the variational multiscale concept,” Numer. Heat Transf., B, vol. 73, no. 1, pp. 19–32, 2018. DOI:10.1080/10407790.2017.1420320.
  • J. F. Thompson, B. K. Soni, and N. P. Weatherill, Handbook of Grid Generation. Boca Raton, FL, USA: CRC Press, 1999.
  • Z. Hu and K. W. Liang, “Numerical investigation of traveling singular problems via moving mesh method,” Mathematics, pp. 1–15, 2012.
  • A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd ed. London: Cambridge University Press, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.