Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 1
380
Views
0
CrossRef citations to date
0
Altmetric
Articles

On sharp-interface dual-grid level-set method for two-phase flow simulation

, ORCID Icon &
Pages 67-91 | Received 01 Jan 2019, Accepted 11 Apr 2019, Published online: 13 May 2019

References

  • H. P. Kavehpour, “Coalescence of drops,” Annu. Rev. Fluid Mech., vol. 47, no. 1, pp. 245–268, 2015. DOI: 10.1146/annurev-fluid-010814-014720.
  • J. McQuillen, E. Rame, M. Kassemi, B. Singh, and B. Motil, “Results of the workshop on two-phase flow, fluid stability and dynamics: issues in power, propulsion, and advanced life support systems,” NASA TM-2003-212598, 2003. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040034793.pdf.
  • A. Günther and K. F. Jensen, “Multiphase microfluidics: from flow characteristics to chemical and materials synthesis,” Lab. Chip, vol. 6, no. 12, pp. 1487–1503, 2006. DOI: 10.1039/B609851G.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • S. Muzaferija, and M. Peric, “Computation of free-surface flows using interface tracking and interface-capturing methods,” Adv. Fluid Mech., vol. 24, pp. 59–100, 1999.
  • A. Valencia, M. Cordova, and J. Ortega, “Numerical simulation of gas bubbles formation at a submerged orifice in a liquid,” Int. Commun. Heat Mass Transf., vol. 29, no. 6, pp. 821–830, 2002. DOI: 10.1016/S0735-1933(02)00372-X.
  • M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys., vol. 114, no. 1, pp. 146–159, 1994. DOI: 10.1006/jcph.1994.1155.
  • A. Sharma, “Level set method for computational multi-fluid dynamics: A review on developments, applications, and analysis,” Sadhna, vol. 40, no. 3, pp. 627–652, 2015. DOI: 10.1007/s12046-014-0329-3.
  • V. H. Gada and A. Sharma, “On a novel dual-grid level-set method for two-phase flow simulation,” Numer. Heat Transf. B, vol. 59, no. 1, pp. 26–57, 2011. DOI: 10.1080/10407790.2011.540956.
  • A. Lakdawala, V. H. Gada, and A. Sharma, “On dual grid level-set method for computational-electro-multi-fluid-dynamics simulation,” Numer. Heat Transf. B, vol. 67, no. 2, pp. 161–185, 2015. DOI: 10.1080/10407790.2014.949582.
  • N. D. Patil, V. H. Gada, A. Sharma, and R. Bhardwaj, “On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces,” Int. J. Multiphase Flow, vol. 81, pp. 54–66, 2016. DOI: 10.1016/j.ijmultiphaseflow.2016.01.005.
  • M. Rudman, “A volume-tracking method for incompressible multifluid flows with large density variations,” Int. J. Num. Methods Fluids, vol. 28, no. 2, pp. 357–378, 1998. DOI: 10.1002/(SICI)1097-0363(19980815)28:2<357::AID-FLD750>3.3.CO;2-4.
  • H. Ding, and C. Yuan, “On the diffuse interface method using a dual-resolution Cartesian grid,” J. Comp. Phys., vol. 273, pp. 243–254, 2014. DOI: 10.1016/j.jcp.2014.05.005.
  • P. Gomez, J. Hernandez, and J. Lopez, “On the reinitialization procedure in a narrow-band locally refined level set method for interfacial flows,” Int. J. Numer. Methods Eng., vol. 63, pp. 1478–1512, 2005.
  • M. Herrmann, “A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids,” J. Comput. Phys., vol. 227, no. 4, pp. 2674–2706, 2008. DOI: 10.1016/j.jcp.2007.11.002.
  • R. R. Nourgaliev, M.-S. Liou, and T. G. Theofanous, “Numerical prediction of interfacial instabilities: Sharp interface method (SIM),” J. Comput. Phys., vol. 227, no. 8, pp. 3940–3970, 2008. DOI: 10.1016/j.jcp.2007.12.008.
  • N. Thakkar, A. Lakdawala, A. Sharma, and S. Karagadde, “Coupled level-set and immersed-boundary method for simulation of filling in a complex geometry based mold,” Numer. Heat Transf. B, vol. 74, no. 6, pp. 861–882, 2018. DOI: 10.1080/10407790.2019.1591857.
  • R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A non-oscillatory Eulerian approach to interfaces in multimaterial flows (The Ghost Fluid Method),” J. Comput. Phys., vol. 152, no. 2, pp. 457–492, 1999. DOI: 10.1006/jcph.1999.6236.
  • D. Q. Nguyen, R. Fedkiw, and M. Kang, “A boundary condition capturing method for incompressible flame discontinuities,” J. Comput. Phys., vol. 172, no. 1, pp. 71–98, 2001. DOI: 10.1006/jcph.2001.6812.
  • F. Gibou, R. Fedkiw, L. T. Cheng, and M. Kang, “A second order accurate symmetric discretization of the poisson equation on irregular domains,” J. Comput. Phys., vol. 176, no. 1, pp. 205–227, 2002. DOI: 10.1006/jcph.2001.6977.
  • X. D. Liu, R. Fedkiw, and M. Kang, “A boundary condition capturing method for Poisson’s equation on irregular domains,” J. Comput. Phys., vol. 160, no. 1, pp. 151–178, 2000. DOI: 10.1006/jcph.2000.6444.
  • T. Menard, S. Tanguy, and A. Berlemont, “Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet,” Int. J. Multiphase Flow, vol. 33, pp. 510–524, 2007. DOI: 10.1016/j.ijmultiphaseflow.2006.11.001.
  • V. Moureau, and O. Desjardins, “A second-order ghost-fluid method for the primary atomization of liquid fuel in air-blast type injectors.” Center for Turbulence Research Proceedings of the Summer Program, 2008, pp. 143–154. Available: https://web.stanford.edu/group/ctr/Summer/SP08/3_1_Moureau.pdf
  • P. A. Stewart, N. Lay, M. Sussman, and M. Ohta, “An improved sharp interface method for viscoelastic and viscous two-phase flows,” J. Sci. Comput., vol. 35, no. 1, pp. 43–61, 2008. DOI: 10.1007/s10915-007-9173-5.
  • Z. Ge, J. C. Loiseau, O. Tammisola, and L. Brandt, “An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces,” J. Comput. Phys., vol. 353, pp. 435–459, 2018. DOI: 10.1016/j.jcp.2017.10.046.
  • H. Hwang and G. Son, “A level-set method for the direct numerical simulation of particle motion in droplet evaporation,” Numer. Heat Transf. B, vol. 68, no. 6, pp. 479–494, 2015. DOI: 10.1080/10407790.2015.1052309.
  • H. Lee and G. Son, “Numerical and analytical study of laminar film condensation in upward and downward vapor flows,” Numer. Heat Transf. A, vol. 74, no. 4, pp. 1139–1153, 2018. DOI: 10.1080/10407782.2018.1515334.
  • J. Shaikh, A. Sharma, and R. Bhardwaj, “On sharp-interface level-set method for heat and/or mass transfer induced Stefan problem”, Int. J. Heat Mass Transf., vol. 96, pp. 458–473, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.074.
  • J. Shaikh, A. Sharma, and R. Bhardwaj, “On comparison of the sharp-interface and diffuse-interface level set methods for 2D capillary and/or gravity induced flows,” Chem. Eng. Sci., vol. 176, pp. 77–95, 2018. DOI: 10.1016/j.ces.2017.10.022.
  • R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfacial flow,” Annu. Rev. Fluid Mech., vol. 31, no. 1, pp. 567–603, 1999. DOI: 10.1146/annurev.fluid.31.1.567.
  • K. Zhang, L. Ma, X. Xu, J. Luo, and D. Guo, “Temperature distribution along the surface of evaporating droplets,” Phys. Rev. E, vol. 89, pp. 032404, 2014.
  • J. Shaikh, “A novel sharp-interface level-set-method based CMFD development and its application for analysis of coalescence and evaporation of a droplet”, PhD Thesis, Department of Mechanical Engineering, IIT Bombay, 2017.
  • T. Aslam, “A partial differential equation approach to multidimensional extrapolation,” J. Comput. Phys., vol. 193, no. 1, pp. 349–355, 2004. DOI: 10.1016/j.jcp.2003.08.001.
  • S. Tanguy, T. Menard, and A. Berlemont, “A level set method for vaporizing two-phase flows,” J. Comput. Phys., vol. 221, no. 2, pp. 837–853, 2007. DOI: 10.1016/j.jcp.2006.07.003.
  • L. R. Villegas, R. Alis, M. Lepilliez, and S. Tanguy, “A ghost fluid/level set method for boiling flows and liquid evaporation: application to the Leidenfrost effect,” J. Comput. Phys., vol. 316, pp. 789–813, 2016. DOI: 10.1016/j.jcp.2016.04.031.
  • M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams, “A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework,” J. Comput. Phys., vol. 213, no. 1, pp. 141–173, 2006. DOI: 10.1016/j.jcp.2005.08.004.
  • J. P. Stark, “Fundamentals of classical thermodynamics (Van Wylen, Gordon J.; Sonntag, Richard E.),” J. Chem. Educ., vol. 43, no. 5, p. A472, 1966.
  • A. Sharma, Introduction to Computational Fluid Dynamics: Development, Application and Analysis. New Delhi, India: Wiley UK and Ane Books Pvt. Ltd., 2017.
  • M. Kang, R. Fedkiw, and X. D. Liu, “A boundary condition capturing method for multiphase incompressible flow”, J. Sci. Comput., vol. 15, pp. 323–360, 2000. DOI: 10.1023/A:1011178417620.
  • A. W. Date, Introduction to Computational Fluid Dynamics. New York, NY: Cambridge University Press, 2005.
  • M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta, and R. Zhi-Wei, “A sharp interface method for incompressible two-phase flows,” J. Comput. Phys., vol. 221, no. 2, pp. 469–505, 2007. DOI: 10.1016/j.jcp.2006.06.020.
  • V. H. Gada and A. Sharma, “On derivation and physical interpretation of level set method-based equations for two-phase flow simulations,” Numer. Heat Transf. B, vol. 56, no. 4, pp. 307–322, 2009. DOI: 10.1080/10407790903388258.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modelling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • N. D. Patil, P. G. Bange, R. Bhardwaj, and A. Sharma, “Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles,” Langmuir, vol. 32, no. 45, pp. 11958–11972, 2016. DOI: 10.1021/acs.langmuir.6b02769.
  • J. C. Martin and W. J. Moyce, “An experimental study of the collapse of liquid columns on a rigid horizontal plane,” Philos. Trans. Roy. Soc. Lond. Ser. A, vol. 244, no. 882, pp. 312–324, 1952. DOI: 10.1098/rsta.1952.0006.
  • J. Han and G. Tryggvason, “Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force,” Phys. Fluids, vol. 11, no. 12, pp. 3650–3667, 1999. DOI: 10.1063/1.870229.
  • H. Hu and R. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B, vol. 106, no. 6, pp. 1334–1344, 2002. DOI: 10.1021/jp0118322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.