Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 3
121
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A three-field smoothed formulation for partitioned fluid–structure interaction via nonlinear block-Gauss–Seidel procedure

ORCID Icon &
Pages 198-216 | Received 22 Jan 2019, Accepted 02 May 2019, Published online: 28 May 2019

References

  • C. Farhat, P. Geuzaine, and G. Brown, “Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter,” Comput. Fluids, vol. 32, no. 1, pp. 3–29, 2003. DOI:10.1016/S0045-7930(01)00104-9.
  • F. Stella et al., “A numerical simulation of fluid-structure interaction in internal flows,” Numer. Heat Transf. B, vol. 47, no. 5, pp. 403–418, 2005. DOI:10.1080/10407790590919180.
  • T. He, D. Zhou, and Y. Bao, “Combined interface boundary condition method for fluid-rigid body interaction,” Comput. Methods Appl. Mech. Eng., vol. 223, pp. 81–102, 2012. DOI:10.1016/j.cma.2012.02.007.
  • Y.-Y. Tsui, Y.-C. Huang, C.-L. Huang, and S.-W. Lin, “A finite-volume-based approach for dynamic fluid-structure interaction,” Numer. Heat Transf. B, vol. 64, no. 4, pp. 326–349, 2013. DOI:10.1080/10407790.2013.806691.
  • T. He, D. Zhou, Z. Han, J. Tu, and J. Ma, “Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method,” Int. J. Comput. Fluid Dyn., vol. 28, no. 6–10, pp. 272–300, 2014. DOI:10.1080/10618562.2014.927057.
  • T. He and K. Zhang, “Combined interface boundary condition method for fluid-structure interaction: some improvements and extensions,” Ocean Eng., vol. 109, pp. 243–255, 2015. DOI:10.1016/j.oceaneng.2015.08.052.
  • M. Cervera, R. Codina, and M. Galindo, “On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems,” Eng. Comput., vol. 13, no. 6, pp. 4–30, 1996. DOI:10.1108/02644409610128382.
  • C. Wood, A. J. Gil, O. Hassan, and J. Bonet, “Partitioned block-Gauss–Seidel coupling for dynamic fluid-structure interaction,” Comput. Struct., vol. 88, no. 23-24, pp. 1367–1382, 2010. DOI:10.1016/j.compstruc.2008.08.005.
  • W. Zeng and G. R. Liu, “Smoothed finite element methods (S-FEM): an overview and recent developments,” Arch. Comput. Methods Eng., vol. 25, no. 2, pp. 397–435, 2018. DOI:10.1007/s11831-016-9202-3.
  • J. S. Chen, C. T. Wu, S. Yoon, and Y. You, “A stabilized conforming nodal integration for Galerkin mesh-free methods,” Int. J. Numer. Methods Eng., vol. 50, no. 2, pp. 435–466, 2001. DOI:10.1002/1097-0207(20010120)50:2 < 435::AID-NME32 > 3.0.CO;2-A.
  • J. W. Yoo, B. Moran, and J. S. Chen, “Stabilized conforming nodal integration in the natural-element method,” Int. J. Numer. Methods Eng., vol. 60, no. 5, pp. 861–890, 2004. DOI:10.1002/nme.972.
  • Z.-Q. Zhang, G. R. Liu, and B. C. Khoo, “Immersed smoothed finite element method for two dimensional fluid-structure interaction problems,” Int. J. Numer. Methods Eng., vol. 90, no. 10, pp. 1292–1320, 2012. DOI:10.1002/nme.4299.
  • S. Wang, B. C. Khoo, G. R. Liu, G. X. Xu, and L. Chen, “Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions,” J. Comput. Phys., vol. 276, pp. 315–340, 2014. DOI:10.1016/j.jcp.2014.07.016.
  • T. He, “Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid,” Int. J. Comput. Methods, vol. 12, no. 5, pp. 1550025, 2015. DOI:10.1142/S0219876215500255.
  • T. He, “A CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using MCIBC method,” Comput. Methods Appl. Mech. Eng, vol. 298, pp. 252–278, 2016. DOI:10.1016/j.cma.2015.09.020.
  • T. He, “Towards straightforward use of cell-based smoothed finite element method in fluid-structure interaction,” Ocean Eng, vol. 157, pp. 350–363, 2018. DOI:10.1016/j.oceaneng.2018.03.054.
  • J. Kim and S. Im, “Polygonal type variable-node elements by means of the smoothed finite element method for analysis of two-dimensional fluid-solid interaction problems in viscous incompressible flows,” Comput. Struct., vol. 182, pp. 475–490, 2017. DOI:10.1016/j.compstruc.2017.01.006.
  • C. Jiang, Z. Q. Zhang, X. Han, G. R. Liu, and T. Lin, “A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows,” Int. J. Numer. Methods Fluids, vol. 86, no. 1, pp. 20–45, 2018. DOI:10.1002/fld.4406.
  • G. R. Liu, K. Y. Dai, and T. T. Nguyen, “A smoothed finite element method for mechanics problems,” Comput. Mech., vol. 39, no. 6, pp. 859–877, 2007. DOI:10.1007/s00466-006-0075-4.
  • K. Y. Dai and G. R. Liu, “Free and forced vibration analysis using the smoothed finite element method (SFEM),” J. Sound Vib., vol. 301, no. 3–5, pp. 803–820, 2007. DOI:10.1016/j.jsv.2006.10.035.
  • X. Y. Cui et al., “A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells,” Comput. Model. Eng. Sci., vol. 28, no. 2, pp. 109–126, 2008. DOI:10.3970/cmes.2008.028.109.
  • C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary Lagrangian–Eulerian computing method for all flow speeds,” J. Comput. Phys., vol. 14, no. 3, pp. 227–253, 1974. DOI:10.1016/0021-9991(74)90051-5.
  • P. Nithiarasu, R. Codina, and O. C. Zienkiewicz, “The Characteristic-Based Split (CBS) scheme—a unified approach to fluid dynamics,” Int. J. Numer. Methods Eng., vol. 66, no. 10, pp. 1514–1546, 2006. DOI:10.1002/nme.1698.
  • K.-J. Bathe, E. Ramm, and E. L. Wilson, “Finite element formulations for large deformation dynamic analysis,” Int. J. Numer. Methods Eng., vol. 9, no. 2, pp. 353–386, 1975. DOI:10.1002/nme.1620090207.
  • A. L. Braun and A. M. Awruch, “A partitioned model for fluid-structure interaction problems using hexahedral finite elements with one-point quadrature,” Int. J. Numer. Methods Eng., vol. 79, no. 5, pp. 505–549, 2009. DOI:10.1002/nme.2566.
  • J. Chung and G. M. Hulbert, “A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-method,” J. Appl. Mech., vol. 60, no. 2, pp. 371–375, 1993. DOI:10.1115/1.2900803.
  • D. Kuhl and M. A. Crisfield, “Energy-conserving and decaying algorithms in non-linear structural dynamics,” Int. J. Numer. Methods Eng., vol. 45, no. 5, pp. 569–599, 1999. DOI:10.1002/(SICI)1097-0207(19990620)45:5 < 569::AID-NME595 > 3.0.CO;2-A.
  • N. M. Newmark, “A method of computation for structural dynamics,” J. Eng. Mech. ASCE, vol. 85, no. 3, pp. 67–94, 1959.
  • W. Dettmer and D. Peric, “A computational framework for fluid-structure interaction: finite element formulation and applications,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 41–43, pp. 5754–5779, 2006. DOI:10.1016/j.cma.2005.10.019.
  • E. Lefrancois, “A simple mesh deformation technique for fluid-structure interaction based on a submesh approach,” Int. J. Numer. Methods Eng., vol. 75, no. no. 9, pp. 1085–1101, 2008. DOI:10.1002/nme.2284.
  • G. A. Markou, Z. S. Mouroutis, D. C. Charmpis, and M. Papadrakakis, “The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 4–6, pp. 747–765, 2007. DOI:10.1016/j.cma.2006.04.009.
  • T. He, T. Wang, and H. Zhang, “The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin-Temam projection framework,” Comput. Fluids, vol. 166, pp. 64–77, 2018. DOI:10.1016/j.compfluid.2018.01.022.
  • M. Souli, A. Ouahsine, and L. Lewin, “ALE formulation for fluid-structure interaction problems,” Comput. Methods Appl. Mech. Eng., vol. 190, no. 5–7, pp. 659–675, 2000. DOI:10.1016/S0045-7825(99)00432-6.
  • D. P. Mok and W. A.Wall, “Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures,” in Trends in Computational Structural Mechanics, Barcelona, Spain, pp. 689–698, 2001.
  • T. Yamada and S. Yoshimura, “Line search partitioned approach for fluid-structure interaction analysis of flapping wing,” Comput. Model. Eng. Sci., vol. 24, no. 1, pp. 51–60, 2008. DOI:10.3970/cmes.2008.024.051.
  • S. Piperno, “Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations,” Int. J. Numer. Methods Fluids, vol. 25, no. 10, pp. 1207–1226, 1997. DOI:10.1002/(SICI)1097-0363(19971130)25:10 < 1207::AID-FLD616 > 3.0.CO;2-R.
  • W. A. Wall and E. Ramm, “Fluid-structure interaction based upon a stabilized (ALE) finite element method,” in Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications, Barcelona, Spain, pp. 1–20, 1998.
  • B. Hubner, E. Walhorn, and D. Dinkier, “Strongly coupled analysis of fluid-structure interaction using space-time finite elements,” in Proceedings of the 2nd European Conference on Computational Mechanics, Cracow, Poland, pp. 546–547, 2001.
  • H. G. Matthies and J. Steindorf, “Partitioned strong coupling algorithms for fluid-structure interaction,” Comput. Struct., vol. 81, no. 8–11, pp. 805–812, 2003. DOI:10.1016/S0045-7949(02)00409-1.
  • P. R. F. Teixeira and A. M. Awruch, “Numerical simulation of fluid-structure interaction using the finite element method,” Comput. Fluids, vol. 34, no. 2, pp. 249–273, 2005. DOI:10.1016/j.compfluid.2004.03.006.
  • K. M. Liew, W. Q. Wang, L. X. Zhang, and X. Q. He, “A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation,” Int. J. Numer. Methods Eng., vol. 72, no. 13, pp. 1560–1583, 2007. DOI:10.1002/nme.2120.
  • Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, “Isogeometric fluid-structure interaction: theory, algorithms, and computations,” Comput. Mech., vol. 43, no. 1, pp. 3–37, 2008. DOI:10.1007/s00466-008-0315-x.
  • M. Olivier, G. Dumas, and J. Morissette, “A fluid-structure interaction solver for nano-air-vehicle flapping wings,” in Proceedings of the 19th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, San Antonio, Texas, USA, pp. 1–15, 2009.
  • C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. G. Matthies, “Nonlinear fluid-structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples,” Comput. Mech., vol. 47, no. 3, pp. 305–323, 2011. DOI:10.1007/s00466-010-0545-6.
  • C. Habchi et al., “Partitioned solver for strongly coupled fluid-structure interaction,” Comput. Fluids, vol. 71, pp. 306–319, 2013. DOI:10.1016/j.compfluid.2012.11.004.
  • A. De Rosis, G. Falcucci, S. Ubertini, and F. Ubertini, “A coupled lattice Boltzmann-finite element approach for two-dimensional fluid-structure interaction,” Comput. Fluids, vol. 86, pp. 558–568, 2013. DOI:10.1016/j.compfluid.2013.08.004.
  • B. Froehle and P. O. Persson, “A high-order discontinuous Galerkin method for fluid-structure interaction with efficient implicit-explicit time stepping,” J. Comput. Phys., vol. 272, no. 9, pp. 455–470, 2014. DOI:10.1016/j.jcp.2014.03.034.
  • S. Kaneko, G. Hong, N. Mitsume, T. Yamada, and S. Yoshimura, “Partitioned-coupling FSI analysis with active control,” Comput. Mech., vol. 60, no. 4, pp. 549–558, 2017. DOI:10.1007/s00466-017-1422-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.