Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 4
137
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Thermal driven flows inside a square enclosure saturated with nanofluids: Convection heat functions and transfer rate revisions from a homogenous model

, , ORCID Icon, &
Pages 265-288 | Received 20 Feb 2019, Accepted 18 May 2019, Published online: 31 May 2019

References

  • A. Baïri, E. Zarco-Pernia, and J. M. García de María, “A review on natural convection in enclosures for engineering applications: The particular case of the parallelogrammic diode cavity,” Appl. Therm. Eng., vol. 63, no. 1, pp. 304–322, 2014. DOI:10.1016/j.applthermaleng.2013.10.065.
  • A. Raisi, B. Gasemi, and S. M. Aminossadati, “A numerical study on the force convection of laminar nanofluid in a microchannel with both slip and no-slip condition,” Numer. Heat Transfer A, vol. 59, no. 2, pp. 114–129, 2011. DOI:10.1080/10407782.2011.540964.
  • R. Roslan, H. Saleh, and I. Hashim, “Buoyancy-driven heat transfer in nanofluid-filled trapezoidal enclosure with variable thermal conductivity and viscosity,” Numer. Heat Transfer A, vol. 60, no. 10, pp. 867–882, 2011. DOI:10.1080/10407782.2011.616778.
  • A. H. Mahmoudi, M. Shahi, and F. Talebi, “Entropy generation due to natural convection in a partially open cavity with a thin heat source subjected to a nanofluid,” Numer. Heat Transfer A, vol. 61, no. 4, pp. 283–305, 2012. DOI:10.1080/10407782.2012.647990.
  • A. K. Beydokhti, H. A. Namaghi, and S. Z. Heris, “Identification of the key variables on thermal conductivity of Cuo and nanofluid by a fractional factorial design approach,” Numer. Heat Transfer B, vol. 63, pp. 480–495, 2013. DOI:10.1080/10407790.2013.831674.
  • G. Li, M. Aktas, and Y. Bayazitoglu, “A review on the discerete Boltzmann model for nanofluid heat transfer in enclosures and channles,” Numer. Heat Transfer B, vol. 67, no. 6, pp. 463–488, 2015. DOI:10.1080/10407790.2014.992089.
  • T. K. Tullius, and Y. Bayazitoglu, “Analysis of a hybrid nanofluid exposed to radiation,” Numer. Heat Transfer B, vol. 69, no. 4, pp. 271–286, 2016. DOI:10.1080/10407790.2015.1104210.
  • H. H. Mahmoudi, and E. Abu-Nada, “Combined effect of magnetic field and nanofluid variable properties on heat transfer enhancement in natural convection,” Numer. Heat Transfer A, vol. 63, no. 6, pp. 452–472, 2013. DOI:10.1080/10407782.2013.733182.
  • S. K. Chio, S. O. Kim, T. H. Lee, and D. Hahn, “Computation of the natural convection of nanofluid in a square cavity with homogenous and nonhomogenous models,” Numer. Heat Transfer A, vol. 65, pp. 287–301, 2014. DOI:10.1080/10407782.2013.831695.
  • C. L. Zhang, L. C. Zheng, Y. Y. Jiang, and X. X. Zhang, “Unsteady natural convection heat transfer of nanofluid in an annulus with a sinusoidally heated source,” Numer. Heat Transfer A, vol. 69, no. 1, pp. 97–108, 2016. DOI:10.1080/10407782.2015.1052313.
  • X. W. Zhu, Y. H. Fu, J. Q. Zhao, and L. Zhu, “Three-dimensional numerical study of the laminar flow and heat transfer in a wavy-finned heat sink filled with Al2O3/ethylene glycol-water nanofluid,” Numer. Heat Transfer A, vol. 69, no. 2, pp. 195–208, 2016. DOI:10.1080/10407782.2015.1052323.
  • A. H. Saberi, and M. Kalteh, “Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice Boltzmann method,” Numer. Heat Transfer A, vol. 70, no. 12, pp. 1390–1401, 2016. DOI:10.1080/10407782.2016.1244394.
  • S. Savithiri, A. Pattamatta, and S. K. Das, “Rayleigh-Benard convection in water-based alumina nanofluid: A numerical study,” Numer. Heat Transfer A, vol. 71, no. 2, pp. 202–214, 2017. DOI:10.1080/10407782.2016.1257302.
  • P. Mayeli, H. Hesami, and M. H. D. F. Moghaddam, “Numerical investigation of the MHD forced convection and entropy generation in a straight duct with sinusoidal walls containing water-Al2O3 nanofluid,” Numer. Heat Transfer A, vol. 71, no. 12, pp. 1235–1250, 2017.
  • M. T. Nguyen, A. M. Aly, and S. W. Lee, “Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method,” Numer. Heat Transfer A, vol. 72, no. 1, pp. 68–88, 2017. DOI:10.1080/10407782.2017.1353385.
  • A. Albojamal, H. Hamzah, A. Haghighi, and K. Vafai, “Analysis of nanofluid transport through a wavy channel,” Numer. Heat Transfer A, vol. 72, no. 12, pp. 869–890, 2017. DOI:10.1080/10407782.2017.1412679.
  • A. Kumar, S. Nath, and D. Bhaja, “Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling,” Numer. Heat Transfer A, vol. 73, no. 7, pp. 429–445, 2018. DOI:10.1080/10407782.2018.1448611.
  • P. Mayeli, H. Hesami, H. Besharati-Foumani, and M. Niajalili, “Al2O3-water nanofluid heat transfer and entropy generation in a ribbed channel with wavy wall in the presence of magnetic field,” Numer. Heat Transfer A, vol. 73, no. 9, pp. 604–623, 2018. DOI:10.1080/10407782.2018.1461494.
  • Z. Haddad, H. F. Oztop, E. Abu-Nada, and A. Mataoui, “A review on natural convection heat transfer of nanofluids,” Renew Sust Energy Rev, vol. 16, no. 7, pp. 5363–5378, 2012. DOI:10.1016/j.rser.2012.04.003.
  • S. U. S. Chio, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Fluids. Eng. Div., vol. 231, pp. 99–105, 1995.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement on a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. DOI:10.1016/S0017-9310(03)00156-X.
  • E. Abu-Nada, and H. F. Oztop, “Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 669–678, 2009. DOI:10.1016/j.ijheatfluidflow.2009.02.001.
  • B. Ghasemi, and S. M. Aminossadati, “Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid,” Numer. Heat Transfer A, vol. 55, no. 8, pp. 807–823, 2009. DOI:10.1080/10407780902864623.
  • S. Savithiri, P. Arvind, and D. K. Sarit, “A single-component nonhomogeneous Lattice Boltzmann Method for natural convection in Al2O3/water nanofluid,” Numer. Heat Transfer A, vol. 68, pp. 1106–1124, 2015.
  • E. B. Ogut, “Natural convection of water-based nanofluids in an inclined enclosure with a heat source,” Int. J. Therm. Sci, vol. 48, pp. 2063–2073, 2009.
  • M. T. Nguyen, A. M. Aly, and S. W. Lee, “Natural convection in a non-Darcy porous cavity filled with Cu-water nanofluid using the characteristic-based split procedure in finite-element method,” Numer. Heat Transfer A, vol. 67, no. 2, pp. 224–247, 2015. DOI:10.1080/10407782.2014.923225.
  • F. H. Lai, and Y. T. Yang, “Lattice Boltzmann simulation of natural convection heat transfer of Al2O3-water nanofluids in a square enclosure,” Int. J. Therm. Sci., vol. 50, no. 10, pp. 1930–1941, 2011. DOI:10.1016/j.ijthermalsci.2011.04.015.
  • E. Abu-Nada, and H. F. Oztop, “Numerical analysis of Al2O3 nanofluids natural convection in wavy cavity,” Numer. Heat Transfer A, vol. 59, no. 5, pp. 403–419, 2011.
  • M. M. Rahman et al., “Unsteady analysis of natural convection in a carbon nanotube-water filled cavity with an inclined heater,” Numer. Heat Transfer A, vol. 69, no. 7, pp. 794–809, 2016. DOI:10.1080/10407782.2015.1090825.
  • L. Kolsi, K. Kalidasan, A. Alghamdi, M. N. Borjini, and P. R. Kanna, “Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide-water nanofluid,” Numer. Heat Transfer A, vol. 70, no. 3, pp. 242–259, 2016. DOI:10.1080/10407782.2016.1173478.
  • A. J. Ahrar, and M. H. Djavareshkian, “Computational investigation of heat transfer and entropy generation rates of Al2O3 nanofluid with Buongiorno's model and using novel TVD hybrid LB method,” J. Mol. Liq, vol. 242, pp. 24–39, 2017. DOI:10.1016/j.molliq.2017.06.125.
  • M. Sheikholeslami, and A. J. Chamhka, “Flow and convection heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field,” Numer. Heat Transfer A, vol. 69, no. 10, pp. 1186–1200, 2016. DOI:10.1080/10407782.2015.1125709.
  • A. Rahimi, A. Amiri, A. Kasaeipoor, and E. H. Malekshah, “Heat transfer enhancement using Al2O3-EG/W(60/40 vol%) in multiple-pipe heat exchanger,” J. Mol. Liq, vol. 261, pp. 319–336, 2018. DOI:10.1016/j.molliq.2018.04.008.
  • D. Wen, and Y. Ding, “Formulation of nanofluids for natural convection heat transfer applications,” Int. J. Heat Fluid Flow, vol. 26, no. 6, pp. 855–864, 2005. DOI:10.1016/j.ijheatfluidflow.2005.10.005.
  • A. G. A. Nnanna, “Experimental model of temperature-driven nanofluid,” J. Heat Transfer, vol. 129, no. 6, pp. 697–704, 2007. DOI:10.1115/1.2717239.
  • K. Kouloulias, A. Sergis, and Y. Hardalups, “Sedimentation in nanofluids during a natural convection experiment,” Int. J. Heat Mass Transfer, vol. 101, pp. 1193–1203, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.05.113.
  • W. Rashmi, A. F. Ismail, M. Kalid, and Y. Faridah, “CFD studies on natural convection heat transfer of Al2O3-water nanofluids,” Heat Mass Transf., vol. 47, no. 10, pp. 1301–1310, 2011. DOI:10.1007/s00231-011-0792-x.
  • N. Putra, W. Roetzel, and S. K. Das, “Natural convection of nanofluids,” Heat Mass Transf., vol. 39, no. 8-9, pp. 775–784, 2003. DOI:10.1007/s00231-002-0382-z.
  • C. H. Li, and G. P. Peterson, “Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions,” Adv. Mech. Eng., vol. 2010, pp. 1–10, 2010.
  • C. J. Ho, W. K. Liu, Y. S. Yang, and C. C. Lin, “Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study,” Int. J. Therm. Sci., vol. 49, no. 8, pp. 1345–1353, 2010. DOI:10.1016/j.ijthermalsci.2010.02.013.
  • F. Y. Zhao, D. Liu, and G. F. Tang, “Conjugate heat transfer in square enclosures,” Heat Mass Transfer, vol. 43, no. 9, pp. 907–922, 2007. DOI:10.1007/s00231-006-0136-4.
  • D. Liu, F. Y. Zhao, and G. F. Tang, “Conjugate heat transfer in an enclosure with a centered conducting body imposed sinusoidal temperature profiles on one side,” Numer. Heat Transfer A, vol. 53, no. 2, pp. 204–223, 2007. DOI:10.1080/10407780701454030.
  • F. Y. Zhao, D. Liu, and G. F. Tang, “Applications issues of the streamline, heatline and massline for conjugate heat and mass transfer,” Int. J. Heat Mass Transfer, vol. 50, no. 1-2, pp. 320–334, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.06.026.
  • S. Kimura, and A. Bejan, “The “Heatline” visualization of convective heat transfer,” J. Heat Transfer, vol. 105, no. 4, pp. 916–919, 1983. DOI:10.1115/1.3245684.
  • V. A. F. Costa, “Unified streamline, heatline and massline methods for the visualization of the two-dimensional heat and mass transfer in anisotropic media,” Int. J. Heat Mass Transfer, vol. 46, no. 8, pp. 1309–1320, 2003. DOI:10.1016/S0017-9310(02)00404-0.
  • H. C. Brinkman, “The Viscosity of Concentrated Suspensions and Solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–581, 1952. DOI:10.1063/1.1700493.
  • J. Maxwell, A Treatise or Electricity and Magnetism. Cambridge, UK: Oxford University Press, 1904.
  • W. Yu, and S. U. S. Chio, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model,” J. Nanopart. Res., vol. 5, no. 1/2, pp. 167–171, 2003. DOI:10.1023/A:1024438603801.
  • F. Y. Zhao, G. F. Tang, and D. Liu, “Conjugate natural convection in enclosures with external and internal heat sources,” Int. J. Eng. Sci., vol. 44, no. 3-4, pp. 148–165, 2006. DOI:10.1016/j.ijengsci.2005.10.006.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980.
  • M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Convers. Manag., vol. 52, no. 1, pp. 789–793, 2011. DOI:10.1016/j.enconman.2010.06.072.
  • D. V. G. Davis, “Natural convection of air in a square cavity-a benchmark numerical solution,” Int. J. Numer. Meth. Fl., vol. 3, pp. 249–264, 1983.
  • T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, “A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure,” Int. J. Heat Mass Transfer, vol. 34, no. 6, pp. 1543–1557, 1991. DOI:10.1016/0017-9310(91)90295-P.
  • G. Barakos, E. Mitsoulis, and D. Assimacopoulos, “Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions,” Int. J. Numer. Meth. Fl., vol. 18, no. 7, pp. 695–719, 1994. DOI:10.1002/fld.1650180705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.