Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 6
111
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Control volume finite element method for entropy generation minimization in mixed convection of nanofluids

&
Pages 363-382 | Received 01 Mar 2019, Accepted 31 May 2019, Published online: 24 Jun 2019

References

  • A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Time Systems and Finite-Time Processes. Boca Raton, FL: CRC Press, 1996.
  • G. F. Naterer and J. A. Camberos, Entropy–Based Analysis and Design of Fluids Engineering Systems. Boca Raton, FL: CRC Press, 2008.
  • S. U. S. Choi and J. A. Estman, “Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29),” ASME-Publications-Fed., vol. 231, pp. 99–106, 1995.
  • O. Aydin and W. J. Yang, “Natural convection in enclosures with localized heating from below and symmetrical cooling from sides,” Int. J. Num. Meth. HFF, vol. 10, no. 5, pp. 518–529, 2000. DOI: 10.1108/09615530010338196.
  • B. Calcagni, F. Marsili, and M. Paroncini, “Natural convective heat transfer in square enclosures heated from below,” Appl. Therm. Eng., vol. 25, no. 16, pp. 2522–2531, 2005. DOI: 10.1016/j.applthermaleng.2004.11.032.
  • S. Abdelkader, R. Mebrouk, B. Abdellah, and B. Khadidja, “Natural convection in a horizontal wavy enclosure,” J. Appl. Sci. Res., vol. 7, pp. 334–341, 2007. DOI: 10.3923/jas.2007.334.341.
  • J. Rostami, “Unsteady natural convection in an enclosure with vertical wavy walls,” Heat Mass Transfer, vol. 44, no. 9, pp. 1079–1087, 2008. DOI: 10.1007/s00231-007-0349-1.
  • R. Saidur, K. Y. Leong, and H. A. Mohammad, “A review on applications and challenges of nanofluids,” Renew. Sust. Energ. Rev., vol. 15, no. 3, pp. 1646–1668, 2011. DOI: 10.1016/j.rser.2010.11.035.
  • V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renew. Sust. Energ. Rev., vol. 11, no. 3, pp. 512–523, 2007. DOI: 10.1016/j.rser.2005.01.010.
  • W. Daungthongsuk and S. Wongwises, “A critical review of convective heat transfer of nanofluids,” Renew. Sust. Energ. Rev., vol. 11, no. 5, pp. 797–817, 2007. DOI: 10.1016/j.rser.2005.06.005.
  • Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol., vol. 196, no. 2, pp. 89–101, 2009. DOI: 10.1016/j.powtec.2009.07.025.
  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transfer, vol. 52, no. 13–14, pp. 3187–3196, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer, vol. 54, no. 17–18, pp. 4051–4068, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.014.
  • K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” Int. J. Heat Mass Transfer, vol. 54, no. 19–20, pp. 4410–4428, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.048.
  • G. Li, M. Aktas and Y. Bayazitoglu, “A review on the discrete Boltzmann model for nanofluid heat transfer in enclosures and channels,” Numer. Heat Transfer, Part B, vol. 67, no. 6, pp. 463–488, 2015. DOI: 10.1080/10407790.2014.992089.
  • H. E. Mghari, H. Louahlia-Gualous, and E. Lepinasse, “Numerical study of nanofluids condensation heat transfer in a square microchannel,” Heat Transfer, Part A, vol. 69, no. 9, pp. 957–976, 2016. DOI: 10.1080/10407782.2015.1109339.
  • K. S. Hwang, J. H. Lee, and S. P. Jang, “Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 4003–4010, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.037.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • G. A. Sheikhzadeh, A. Arefmanesh, M. H. Kheirkhah, and R. Abdollahi, “Natural convection of Cu–water nanofluid in a cavity with partially active side walls,” Eur. J. Mech. B-Fluid, vol. 30, no. 2, pp. 166–176, 2011. DOI: 10.1016/j.euromechflu.2010.10.003.
  • H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.04.009.
  • E. Abu-Nada and H. F. Oztop, “Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 669–678, 2009. DOI: 10.1016/j.ijheatfluidflow.2009.02.001.
  • M. Ghalambaz, A. Doostanidezfuli, H. Zargartalebi, and A. J. Chamkha, “MHD phase change heat transfer in an inclined enclosure: effect of a magnetic field and cavity inclination,” Numer. Heat Transfer, Part A, vol. 71, no. 1, pp. 91–109, 2017. DOI: 10.1080/10407782.2016.1244397.
  • K. Kahveci, “Buoyancy driven heat transfer of nanofluids in a tilted enclosure,” J. Heat Transfer, vol. 132, no. 6, pp. 062501, 2010. DOI: 10.1115/1.4000744.
  • M. Magherbi, H. Abbassi, and A. B. Brahim, “Entropy generation at the onset of natural convection,” Int. J. Heat Mass Transfer, vol. 46, no. 18, pp. 3441–3450, 2003. DOI: 10.1016/S0017-9310(03)00133-9.
  • L. B. Erbay, Z. Altac, and B. Sulus, “An analysis of the entropy generation in a square enclosure,” Entropy, vol. 5, no. 5, pp. 496–505, 2003. DOI: 10.3390/e5050496.
  • B. S. Yilbas, S. Z. Shuja, S. A. Gbadebo, H. I. Abu Al-Hamayle, and K. Boran, “Natural convection and entropy generation in a square cavity,” Int. J. Energy Res., vol. 22, no. 14, pp. 1275–1290, 1998. DOI: 10.1002/(SICI)1099-114X(199811)22:14<1275::AID-ER453>3.0.CO;2-B.
  • A. Mukhopadhyay, “Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources,” Int. Commun. Heat Mass, vol. 37, no. 7, pp. 867–872, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.05.007.
  • I. Dagtekin, H. F. Oztop, and A. Bahloul, “Entropy generation for natural convection in C-shaped enclosures,” Int. Commun. Heat Mass, vol. 34, no. 4, pp. 502–510, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.01.003.
  • S. Mahmud and A. K. M. S. Islam, “Laminar free convection and entropy generation inside an inclined wavy enclosure,” Int. J. Therm. Sci, vol. 42, no. 11, pp. 1003–1012, 2003. DOI: 10.1016/S1290-0729(03)00076-0.
  • M. Shahi, A. H. Mahmoudi, and A. H. Raouf, “Entropy generation due to natural convection cooling of a nanofluid,” Int. Commun. Heat Mass Transfer, vol. 38, no. 7, pp. 972–983, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.04.008.
  • J. Li and C. Kleinstreuer, “Entropy generation analysis for nanofluid flow in microchannels,” J. Heat Transfer, vol. 132, no. 12, pp. 122401, 2010. DOI: 10.1115/1.4002395.
  • P. K. Singh, K. B. Anoop, T. Sundararajan, and S. K. Das, “Entropy generation due to flow and heat transfer in nanofluids,” Int. J. Heat Mass Transfer, vol. 53, no. 21–22, pp. 4757–4767, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.016.
  • M. Moghaddami, A. Mohammadzade, and S. A. Varzane Esfehani, “Second law analysis of nanofluid flow,” Energ. Convers. Manage., vol. 52, no. 2, pp. 1397–1405, 2011. DOI: 10.1016/j.enconman.2010.10.002.
  • Y. Feng and C. Kleinstreuer, “Nanofluid convective heat transfer in a parallel-disk system,” Int. J. Heat Mass Transfer, vol. 53, no. 21–22, pp. 4619–4628, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.031.
  • M. Mirzazadeh, A. Shafaei, and F. Rashidi, “Entropy analysis for non-linear viscoelastic fluid in concentric rotating cylinders,” Int. J. Therm. Sci., vol. 47, no. 12, pp. 1701–1711, 2008. DOI: 10.1016/j.ijthermalsci.2007.11.002.
  • C.-C. Cho, C.-L. Chen, and C.-K. Chen, “Natural convection heat transfer and entropy generation in wavy-wall enclosure containing water-based nanofluid,” Int. J. Heat Mass Transfer, vol. 61, pp. 749–758, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.044.
  • O. Mahian, S. Mahmud, and S. Z. Heris, “Analysis of entropy generation between co-rotating cylinders using nanofluids,” Energy, vol. 44, no. 1, pp. 438–446, 2012. DOI: 10.1016/j.energy.2012.06.009.
  • A. Bejan, Convection Heat Transfer. Hoboken, NJ: John Wiley & Sons, 2013.
  • P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Transfer, vol. 45, no. 4, pp. 855–863, 2002. DOI: 10.1016/S0017-9310(01)00175-2.
  • J. Koo and C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” Int. Commun. Heat Mass Transfer, vol. 32, no. 9, pp. 1111–1118, 2005. DOI: 10.1016/j.icheatmasstransfer.2005.05.014.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • G. F. Naterer, Advanced Heat Transfer, 2nd ed. , Boca Raton, FL: CRC Press, 2018.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • G. F. Naterer, “Constructing an entropy-stable upwind scheme for compressible fluid flow computations,” AIAA J, vol. 37, no. 3, pp. 303–312, 1999. DOI: 10.2514/2.731.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: CRC Press, 1980
  • G. E. Schneider and M. J. Raw, “A skewed, positive influence coefficient upwinding procedure for control-volume-based finite element convection-diffusion computation,” Numer. Heat Transfer, Part A, vol. 9, pp. 1–26, 1986. DOI: 10.1080/10407788608913462.
  • G. de Vahl Davis, “Natural convection of air in a square cavity: a bench mark numerical solution,” Int. J. Numer. Methods Fluids, vol. 3.3, pp. 249–264, 1983. DOI: 10.1002/fld.1650030305.
  • G. de Vahl Davis and I. P. Jones, “Natural convection in a square cavity: a comparison exercise,” Int. J. Numerical Methods Fluids, vol. 3.3, pp. 227–248, 1983. DOI: 10.1002/fld.1650030304.
  • D. C. Wan, B. S. V. Patnaik, and G. W. Wei, “A new benchmark quality solution for buoyancy-driven cavity by discrete singular convolution,” Numer. Heat Transfer, Part B, vol. 40, pp. 199–228, 2001.
  • B. Sarler, “A radial basis function collocation approach in computational fluid dynamics,” Comp. Model. Eng. Sci., vol. 7, pp. 185–193, 2005.
  • G. Kosec and B. Sarler, “Numerical solution of natural convection problems by a meshless method,” in Convection and Conduction Heat Transfer. InTech Open, 2011.
  • N. C. Markatos and K. A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” Int. J. Heat Mass Transfer, vol. 27, no. 5, pp. 755–772, 1984. DOI: 10.1016/0017-9310(84)90145-5.
  • X. Tian, Z. Shui, and C. Ren, “Numerical simulation of natural convection in square cavities with power function temperature wall by lattice Boltzmann method,” 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Atlantis Press 2015.
  • U. Projahn, H. Rieger, and H. Beer, “Numerical analysis of laminar natural convection between concentric and eccentric cylinders,” Numer. Heat Transfer, vol. 4, no. 2, pp. 131–146, 1981. DOI: 10.1080/01495728108961783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.