Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 6
264
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

A mixed isogeometric analysis and control volume approach for heat transfer analysis of nonuniformly heated plates

ORCID Icon, ORCID Icon & ORCID Icon
Pages 347-362 | Received 02 Apr 2019, Accepted 31 May 2019, Published online: 18 Jun 2019

References

  • N. Liu, P. Plucinsky, and A. E. Jeffers, “Combining load-controlled and displacement-controlled algorithms to model thermal-mechanical snap-through instabilities in structures,” J. Eng. Mech., vol. 143, no. 8, pp. 04017051, 2017. DOI:10.1061/(ASCE)EM.1943-7889.0001263.
  • K. B. McGrattan, and G. P. Forney Fire dynamics simulator (version 4). Washington, DC: National Institute of Standards and Technology, 2014. Available: http://dx.doi.org/10.6028/nist.sp.1019.
  • K. S. Surana and P. Kalim, “Isoparametric axisymmetric shell elements with temperature gradients for heat conduction,” Comput. Struct., vol. 23, no. 2, pp. 279–289, 1986. DOI:10.1016/0045-7949(86)90219-1.
  • K. S. Surana and R. K. Phillips, “Three dimensional curved shell finite elements for heat conduction,” Comput. Struct., vol. 25, no. 5, pp. 775–785, 1987. DOI:10.1016/0045-7949(87)90169-6.
  • K. S. Surana and N. J. Orth, “Axisymmetric shell elements for heat conduction with p-approximation in the thickness direction,” Comput. Struct., vol. 33, no. 3, pp. 689–705, 1989. DOI:10.1016/0045-7949(89)90243-5.
  • K. S. Surana and G. Abusaleh, “Curved shell elements for heat conduction with p-approximation in the shell thickness direction,” Comput. Struct., vol. 34, no. 6, pp. 861–880, 1990. DOI:10.1016/0045-7949(90)90357-8.
  • K. S. Surana and N. J. Orth, “Three-dimensional curved shell element based on completely hierarchical p-approximation for heat conduction in laminated composites,” Comput. Struct., vol. 43, no. 3, pp. 477–494, 1992. DOI:10.1016/0045-7949(92)90282-5.
  • J. H. Liu and K. S. Surana, “Piecewise hierarchical p-version axisymmetric shell element for geometrically nonlinear behavior of laminated composites,” Comput. Struct., vol. 55, no. 1, pp. 67–84, 1995. DOI:10.1016/0045-7949(94)00500-3.
  • A. K. Noor and W. S. Burton, “Steady-state heat conduction in multilayered composite plates and shells,” Comput. Struct., vol. 39, no. 1-2, pp. 185–193, 1991. DOI:10.1016/0045-7949(91)90086-2.
  • N. Mukherjee, and P. K. Sinha, “A comparative finite element heat conduction analysis of laminated composite plates,” Comput. Struct., vol. 52, no. 3, pp. 505–510, 1994. DOI:10.1016/0045-7949(94)90236-4.
  • J. Noack, R. Rolfes, and J. Tessmer, “New layerwise theories and finite elements for efficient thermal analysis of hybrid structures,” Comput. Struct., vol. 81, no. 26-27, pp. 2525–2538, 2003. DOI:10.1016/S0045-7949(03)00300-6.
  • A. E. Jeffers, “Heat transfer element for modeling the thermal response of non-uniformly heated plates,” Finite Elem. Anal. Des., vol. 63, pp. 62–68, 2013. DOI:10.1016/j.finel.2012.08.009.
  • A. E. Jeffers, “Triangular shell heat transfer element for the thermal analysis of nonuniformly heated structures,” J. Struct. Eng., vol. 142, no. 1, pp. 04015084, 2016. DOI:10.1061/(ASCE)ST.1943-541X.0001335.
  • A. E. Jeffers and P. A. Beata, “Generalized shell heat transfer element for modeling the thermal response of non-uniformly heated structures,” Finite Elem. Anal. Des., vol. 83, pp. 58–67, 2014. DOI:10.1016/j.finel.2014.01.003.
  • T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 39–41, pp. 4135–4195, 2005. DOI:10.1016/j.cma.2004.10.008.
  • N. Liu, and A. E. Jeffers, “Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity,” Comput. Struct., vol. 196, pp. 1–11, 2018. DOI:10.1016/j.compstruc.2017.10.016.
  • N. Liu and A. E. Jeffers, “Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory,” Compos. Struct., vol. 176, pp. 143–153, 2017. DOI:10.1016/j.compstruct.2017.05.037.
  • N. Liu and A. E. Jeffers, “A geometrically exact isogeometric Kirchhoff plate: Feature-preserving automatic meshing and C1 rational triangular Bézier spline discretizations,” Int. J. Numer. Methods Eng., vol. 115, no. 3, pp. 395–409, 2018. DOI:10.1002/nme.5809.
  • Y. Bazilevs et al., “Isogeometric analysis using T-splines,” Comput. Methods Appl. Mech. Eng., vol. 199, no. 5-8, pp. 229–263, 2010. DOI:10.1016/j.cma.2009.02.036.
  • N. Liu and A. E. Jeffers, “Rational Bézier triangles for the analysis of isogeometric higher-order gradient damage models,” presented at 13th World Congress on Computational Mechanics (WCCM XIII) and 2nd Pan American Congress on Computational Mechanics (PANACM II), New York City, NY, USA, Jul. 22–27, 2018.
  • N. Liu, “Non-uniform rational b-splines and rational Bezier triangles for isogeometric analysis of structural applications,” Ph.D. dissertation, University of Michigan, 2018.
  • M. J. Borden, M. A. Scott, J. A. Evans, and T. Hughes, “Isogeometric finite element data structures based on Bézier extraction of NURBS,” Int. J. Numer. Methods Eng., vol. 87, no. 1–5, pp. 15–47, 2011. DOI:10.1002/nme.2968.
  • X. Yu and A. E. Jeffers, “A comparison of subcycling algorithms for bridging disparities in temporal scale between the fire and solid domains,” Fire Saf. J., vol. 59, pp. 55–61, 2013. DOI:10.1016/j.firesaf.2013.03.011.
  • P. A. Beata and A. E. Jeffers, “Spatial homogenization algorithm for bridging disparities in scale between the fire and solid domains,” Fire Saf. J., vol. 76, pp. 19–30, 2015. DOI:10.1016/j.firesaf.2015.05.008.
  • P. A. Beata, Computational Approaches to Fire-structure Interaction and Real-time Fire Monitoring, Ph.D. dissertation, University of Michigan, Ann Arbor, MI, USA, 2017.
  • Q. Liu and P. Ming, “A high-order control volume finite element method for 3-D transient heat conduction analysis of multilayer functionally graded materials,” Numer. Heat Transf. Part B, vol. 73, no. 6, pp. 363–385, 2018. DOI:10.1080/10407790.2018.1470425.
  • D. P. Zielinski and V. R. Voller, “A control volume finite element method with spines for solutions of fractional heat conduction equations,” Numer. Heat Transf. Part B, vol. 70, no. 6, pp. 503–516, 2016. DOI:10.1080/10407790.2016.1230386.
  • E. O. B. Ogedengbe, K. L. Olaitan, and G. F. Naterer, “Tri-quadratic skew upwind scheme for scalar advection in a control-volume-based finite element method,” Numer. Heat Transf. Part B, vol. 71, no. 6, pp. 485–505, 2017. DOI:10.1080/10407790.2017.1309188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.