Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 6
197
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Optimization and application of sensitivity-based spatial discrete method for numerical solution of transient flow and heat transfer

, , , , , & show all
Pages 383-403 | Received 28 Mar 2019, Accepted 31 May 2019, Published online: 19 Jun 2019

References

  • N. Li, and N. Zhao, “Feasibility Analysis of Numerical Solution of Elliptic Partial Differential Equation by Finite Element Method,” Bull. Sci. Technol., vol. 34, no. 6, pp. 12–14 + 22, 2018. DOI:10.13774/j.cnki.kjtb.2018.06.003.
  • E. C. Zachmanoglou, and W. Dale Thoe, Introduction to Partial Differential Equations with Applications. New York, NY: Dover Publications, 1987.
  • K. W. Morton, and D. F. Mayers, Numerical Solution of Partial Differential Equations. Cambridge, UK: Cambridge University Press, 2006, p. 1–6
  • Q. Liu, “Differential Algebraic Equations with Multiple Objective Optimization by Constrained Distribution Control Partial Differential Equations,” Bull. Sci. Technol., vol. 33, no. 4, pp. 11–14, 2017. DOI:10.13774/j.cnki.kjtb.2017.04.003.
  • B. Bian, S. Li, and J. Xu, Trends in Partial Differential Equations. Beijing: Higher Edu. Press, 2009, p. 1–40.
  • S. G. Ahmed, Numerical Analysis for Science, Engineering and Technology. Sharjah, U.A.E.: Bentham Science Publishers, 2018, pp. 218–258.
  • A. Ashrafizadeh, and M. Nikfar, “On the numerical solution of generalized convection heat transfer problems via the method of proper closure equations – part II: application to test problems,” Numer. Heat Trans., Part A: Appl., vol. 70, no. 2, pp. 204–222, 2016. DOI:10.1080/10407782.2016.1173467.
  • F. J. Gaspar, F. J. Lisbona, and P. N. Vabishchevich, “A Finite Difference Analysis of Biot’s Consolidation Model,” Appl. Numer. Math., vol. 44, no. 4, pp. 487–506, 2003. DOI:10.1016/S0168-9274(02)00190-3.
  • H. Safae, A. Amahmid, H. Beji et al., “Hybrid Lattice Boltzmann Finite Difference Simulation of Soret Convection Flows in a Square Cavity with Internal Heat Generation,” Numer. Heat Trans., Part A: Appl., vol. 74, no. 1, pp. 948–973, 2018. DOI:10.1080/10407782.2018.1487690.
  • O. C. Zienkiewicz, The Finite Element Method. 3rd ed. London, UK: McGraw-Hill, 1977.
  • Y. Wang, H. Su, and X. Feng, “Streamline Diffusion Finite Element Method for Stationary Incompressible Natural Convection Problem,” Numer. Heat Trans., Part B: Fundament., vol. 74, no. 2, pp. 519–537, 2018. DOI:10.1080/10407790.2018.1513281.
  • K. Aziz, and A. Settari, Petroleum Reservoir Simulation. London: Applied Science Publishers, 1979.
  • C. T. Degroot, “Automatic Differentiation of a Finite-Volume-Based Transient Heat Conduction Code for Sensitivity Analysis,” Numer. Heat Trans., Part B: Fundament., vol. 73, no. 5, pp. 292–307, 2018. DOI:10.1080/10407790.2018.1486648.
  • I. Sokolova, M. Gusti Bastisya, and H. Hajibeygi, “Multiscale Finite Volume Method for Finite-Volume-Based Simulation of Poroelasticity,” Comput. Phys., vol. 379, pp. 309–324, 2019. DOI:10.1016/j.jcp.2018.11.039.
  • B. R. (R. ). Baliga, and I. Yuri Lokhmanets, “Generalized Richardson Extrapolation Procedures for Estimating Grid-Independent Numerical Solutions,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, pp. 1121–1144, 2016. DOI:10.1108/HFF-10-2015-0445.
  • J. Wackers et al., “Can Adaptive Grid Refinement Produce Grid-Independent Solutions for Incompressible Flows?,” Comput. Phys., vol. 344, pp. 364–380, 2017. DOI:10.1016/j.jcp.2017.04.077.
  • J. Y. Tu, G. H. Yeoh, and C. Q. Liu, “Computational Fluid Dynamics: A Practical Approach.” Amsterdam: Elsevier, 2009, pp. 147–148.
  • M. Mehdi Doustdar, and H. Kazemi, “Effects of Fixed and Dynamic Mesh Methods on Simulation of Stepped Planning Craft,” J. Ocean Eng. Sci., vol. 4, no. 1, pp. 33–48, 2019. DOI:10.1016/j.joes.2018.12.005.
  • J. Xiao, Q. C. Yang, and L. Wang, “Numerical Analysis of Aerodynamic Damping for Centrifugal Impeller,” J. Aeronaut. Power, vol. 33, no. 9, pp. 2129–2138, 2018.
  • Z. C. Wu, B. E. Huang, and Y. C. Wu, “Application of Sliding Dynamic Grid to Wavy Water Ditching Simulation,” J. Harbin Inst. Technol., vol. 51, no. 1, pp. 80–86, 2019.
  • R. Duan, W. Liu, L. Xu et al., “Mesh Type and Number for the CFD Simulations of Air Distribution in an Aircraft Cabin,” Numer. Heat Trans., Part B: Fundament., vol. 67, no. 6, pp. 489–506, 2015. DOI:10.1080/10407790.2014.985991.
  • X. W. Wang, X. P. Jiang, L. Wang, and G. Q. Wu, “Study on Transient Performance of Twin-Screw Expander Based on CFD Analysis,” J. Drainage Irrigation Machinery Eng., pp. 1–6, 2018. DOI:10.3969/j.issn.1674-8530.18.0072.
  • D. C. Mei, Z. X. Liu, L. Z. Tu, and H. C. Zhang, “Analysis of the Transient Flow Process in the Catalyst Convertor Based on CFD,” Automobile Appl. Technol., vol. 201, pp. 3–6 + 17, 2017. DOI:10.16638/j.cnki.1671-7988.2017.20.002.
  • T. Uomoto, K. Satoh, H. Okada, and Y. Yusa, “Mesh-Independent Data Point Finite Element Method (MDP-FEM) for Large Deformation Elastic-Plastic Problems – An Application to the Problems of Diffused Necking,” Finite Elements Anal. Des., vol. 136, pp. 18–36, 2017. DOI:10.1016/j.finel.2017.08.001.
  • J. P. Holman, Heat Transfer. London: McGraw-Hill Book Company, 2005, pp.135–137.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. London: McGraw-Hill Book Company, 1989, pp. 58–59.
  • J. M. Oretge, and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. New York, London: Academic Press, 1970, pp. 189–200.
  • L. H. Yang, “Study on the Numerical and the Thermodynamic Model of the Tank Discharge Process.” Ph.D. dissertation, School of Mechanical and Power Engineering, Shanghai, Shanghai Jiaotong Univ., 2007 (in Chinese).
  • H. G. Wang, G. Chen, E. H. Zhang et al., Aero Engine Design Manual: Volume 16 Air System and Heat Transfer Analysis. Beijing: Aviation Industry Press, 2001.
  • Z. Tao, S. P. Hou, S. T. Ding et al., “Application of Fluid Network Method in Engine Air Cooling System Design,” J. Aeronaut. Power, vol. 24, no. 1, pp. 1–6, 2009. DOI:10.13224/j.cnki.jasp.2009.01.017.
  • K. J. Kutz, and T. M. Speer, “Simulation of the Secondary Air System of Aero Engines,” J. Turbo Machinery, vol. 116, no. 2, pp. 360, 1994.
  • C. K. Liu, H. M. Liu, S. T. Ding et al., “Modularized Simulation Modeling of Air System with Fast Transients,” J. Aeronaut. Power, vol. 30, no. 8, pp. 1826–1833, 2009. DOI:10.13224/j.cnki.jasp.2015.08.005.
  • S. T. Ding, W. W. Che, and C. K. Liu, “Analysis of Pressure Dynamic Characteristics of Air System Double Cavity Model,” J. Beijing Aerospace Univ., vol. 42, no. 4, pp. 654–660, 2016. DOI:10.13700/j.bh.1001-5965.2015.0256.
  • L. Gallar, C. Calcagin, C. Llorens et al., “Time Accurate Modelling of the Secondary Air System Response to Rapid Transients,” Aerospace Eng., vol. 225, pp. 946–958, 2011. DOI:10.1177/0954410011398280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.