Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 2
254
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Model comparison, thermal nonequilibrium characteristic and boundary conditions discussion of two-phase flow with phase change in porous media

, , &
Pages 88-105 | Received 18 Feb 2019, Accepted 18 May 2019, Published online: 19 Jul 2019

References

  • A. Tambue, I. Berre, and J. M. Nordbotten, “Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock-Euler and Rosenbrock-type Methods,” Adv. Water Resour., vol. 53, no. 1, pp. 250–262, 2013. DOI: 10.1016/j.advwatres.2012.12.004.
  • W. Liu, S. Peng, and K. Mizukami, “A general mathematical modelling for heat and mass transfer in unsaturated porous media: An application to free evaporative cooling,” Heat Mass Transf., vol. 31, no. 1–2, pp. 49–55, 1995. DOI: 10.1007/BF02537421.
  • S. Z. Zhang et al., “Evaluation of performance enhancement by condensing the anode moisture in a proton exchange membrane fuel cell stack,” Appl. Therm. Eng., vol. 120, pp. 115–120, 2017. DOI: 10.1016/j.applthermaleng.2017.03.128.
  • T. V. Nguyen, and M. W. Knobbe, “A liquid water management strategy for PEM fuel cell stacks,” J. Power Sources, vol. 114, pp. 70–79, 2003. DOI: 10.1016/S0378-7753(02)00591-8.
  • E. Afshari, and S. A. Jazayeri, “Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance,” Energy Convers. Manage., vol. 51, no. 4, pp. 655–662, 2010. DOI: 10.1016/j.enconman.2009.11.004.
  • Y. Jiang, Z. R. Yang, K. Jiao, and Q. Du, “Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel analytical model,” Energy Convers. Manage., vol. 164, pp. 639–654, 2018. DOI: 10.1016/j.enconman.2018.03.002.
  • H. M. Sabir, and Y. B. M. ElHag, “A study of capillary-assisted evaporators,” Appl. Therm. Eng., vol. 27, no. 8–9, pp. 1555–1564, 2007. DOI: 10.1016/j.applthermaleng.2006.09.011.
  • J. Bae, S. Y. Lee, and S. J. Kim, “Numerical investigation of effect of film dynamics on fluid motion and thermal performance in pulsating heat pipes,” Energy Convers. Manage., vol. 151, pp. 296–310, 2017. DOI: 10.1016/j.enconman.2017.08.086.
  • E. Eckert, and M. Faghri, “A general analysis of moisture migration caused by temperature differences in an unsaturated porous medium,” Int. J. Heat Mass Transf., vol. 23, no. 12, pp. 1613–1623, 1980. DOI: 10.1016/0017-9310(80)90220-3.
  • F. Bennai, K. Abahri, R. Belarbi, and A. Tahakourt, “Periodic homogenization for heat, air, and moisture transfer of porous building materials,” Numer. Heat Transfer B: Fundam., vol. 70, no. 5, pp. 420–440, 2016. DOI: 10.1080/10407790.2016.1230393.
  • M. Siavashi, H. R. T. Bahrami, and H. Saffari, “Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model,” Numer. Heat Transfer A: Appl.., vol. 71, no. 12, pp. 1251–1273, 2017. DOI: 10.1080/10407782.2017.1345270.
  • R. Mandel, A. Shooshtari, and M. Ohadi, “Effect of manifold flow configuration on two-phase ultra-high flux cooling,” Numerical Heat Transfer A: Appl., vol. 74, no. 8, pp. 1425–1442, 2018. DOI: 10.1080/10407782.2018.1538297.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Numerical study on the convective heat transfer of nanofluid in a triangular minichannel heat sink using the Eulerian–Eulerian two-phase model,” Numer. Heat Transf. A: Appl., vol. 72, no. 2, pp. 185–196, 2017. DOI: 10.1080/10407782.2017.1358990.
  • P. Sapin, A. Gourbil, P. Duru, F. Fichot, M. Prat, and M. Quintard, “Reflooding with internal boiling of a heating model porous medium with mm-scale pores,” Int. J. Heat Mass Transf., vol. 99, pp. 512–520, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.013.
  • H. Y. Yoon, and J. J. Jeong, “An implicit numerical scheme for the simulation of three-dimensional two-phase flows in light water nuclear reactors,” Numer. Heat Transf. B-Fundam., vol. 70, no. 3, pp. 183–199, 2016. DOI: 10.1080/10407790.2016.1193402.
  • F. He, and J. H. Wang, “Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change,” Energy Convers. Manag., vol. 80, pp. 591–597, 2014. DOI: 10.1016/j.enconman.2014.02.003.
  • H. Gan, Y. H. Zhu, Z. Y. Liao, X. L. Ouyang, and P. X. Jiang, “Experimental investigation of transpiration cooling with phase change for sintered porous plates,” Int. J. Heat Mass Transf., vol. 114, pp. 1201–1213, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.114.
  • H. H. Bau, and K. Torrance, “Boiling in low-permeability porous materials,” Int. J. Heat Mass Transf., vol. 25, no. 1, pp. 45–55, 1982. DOI: 10.1016/0017-9310(82)90233-2.
  • C. Y. Wang, and C. Beckermann, “A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media- I. Formulation,” Int. J. Heat Mass Transf., vol. 36, no. 11, pp. 2747–2758, 1993. DOI: 10.1016/0017-9310(93)90094-M.
  • W. J. Dong, and J. H. Wang, “A new model and its application to investigate transpiration cooling with liquid coolant phase change,” Transp. Porous Media, vol. 122, no. 3, pp. 575–593, 2018. DOI: 10.1007/s11242-017-0963-4.
  • J. V. Wolfersdorf, “Effect of coolant side heat transfer on transpiration cooling,” Heat Mass Transf., vol. 41, pp. 327–337, 2005.
  • J. H. Wang, and J. X. Shi, “A discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model,” ASME J. Heat Transf., vol. 130, no. 1, pp. 014504–014505, 2008. DOI: 10.1115/1.2780188.
  • N. Wakao, S. Kaguei, and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: Correlation of Nusselt numbers,” Chem. Eng. Sci., vol. 34, no. 3, pp. 325–336, 1979. DOI: 10.1016/0009-2509(79)85064-2.
  • J. X. Shi, and J. H. Wang, “A numerical investigation of transpiration cooling with liquid coolant phase change,” Transp. Porous Media, vol. 87, no. 3, pp. 703–716, 2011. DOI: 10.1007/s11242-010-9710-9.
  • G. Chavent, “A new formulation of diphasic incompressible flows in porous media,” in Applications of Methods of Functional Analysis to Problems in Mechanics, P. Germain and B. Nayroles, Eds. New York: Springer,1976, pp. 258–270.
  • R. S. Colladay, and F. S. Stepka, Examination of Boundary Conditions for Heat Transfer through a Porous Wall, 1971.
  • D. M. Burch, R. W. Allen, and B. A. Peavy, “Transient temperature distributions within porous slabs subjected to sudden transpiration heating,” Trans. ASME J. Heat Transf., vol. 98, no. 2, pp. 221, 1976. DOI: 10.1115/1.3450522.
  • M. Martiny, A. Schulz, and S. Wittig, “Mathematical model describing the coupled heat transfer in effusion cooled combustor walls,” ASME 1997 Int. Gas Turbine Aeroengine Congr. Exhibition, pp. V003T09A065, 1997.
  • A. C. Rodriguez, “Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional “latch” in the mechanism of reverse gyrase,” J. Biol. Chem., vol. 277, no. 33, pp. 29865–29873, 2002.
  • B. Alazmi, and K. Vafai, “Analysis of variants within the porous media transport models,” Trans. ASME J. Heat Transf., vol. 122, no. 2, pp. 303, 2000. DOI: 10.1115/1.521468.
  • C. Xin, Z. Rao, X. You, Z. Song, and D. Han, “Numerical investigation of vapor–liquid heat and mass transfer in porous media,” Energy Conversation Manage., vol. 78, pp. 1–7, 2014. DOI: 10.1016/j.enconman.2013.10.047.
  • H. Y. Li, K. C. Leong, L. W. Jin, and J. C. Chai, “Transient two-phase flow and heat transfer with localized heating in porous media,” Int. J. Thermal Sci., vol. 49, no. 7, pp. 1115–1127, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.024.
  • K. Wei, J. H. Wang, and M. Mao, “Model discussion of transpiration cooling with boiling,” Transport Porous Media, vol. 94, no. 1, pp. 303–318, 2012. DOI: 10.1007/s11242-012-0006-0.
  • F. Lindner, P. Nuske, K. Weishaupt, R. Helmig, C. Mundt, and M. Pfitzner, “Transpiration cooling with local thermal nonequilibrium: Model comparison in multiphase flow in porous media,” J. Porous Media, vol. 19, no. 2, pp. 131–153, 2016. DOI: 10.1615/JPorMedia.v19.i2.30.
  • J. A. Landis, and W. Jerry Bowman, “Numerical study of a transpiration cooled rocket nozzle,” AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, 32nd, Lake Buena Vista, FL, July 1–3, 1996. DOI: 10.2514/6.1996-2580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.