Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 2
253
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A review of hybrid integral transform solutions in fluid flow problems with heat or mass transfer and under Navier–Stokes equations formulation

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , & show all
Pages 60-87 | Received 03 May 2019, Accepted 09 Jul 2019, Published online: 25 Jul 2019

References

  • M. A. B. Deakin, “Euler´s invention of the integral transforms,” Arch. Hist. Exact Sci, vol. 33, no. 4, pp. 307–319, 1985. DOI: 10.1007/BF00348586.
  • J. B. Fourier, Théorie Analytique de la Chaleur, 1822, Firmin Didot Père et Fils., Paris. http://books.google.com/books?id=TDQJAAAAIAAJ.
  • N. N. Bogolyubov, L. D. Faddeev, A. Y. Ishlinskii, V. N. Koshlyakov, and Y. A. Mitropol'skii, “Nikolai Sergeevich Koshlyakov (On the centenary of his birth),” Russian Math. Surv., vol. 45, no. 4, pp. 197–202, 1990. DOI: 10.1070/RM1990v045n04ABEH002382.
  • N. S. Koshlyakov, Basic Differential Equations of Mathematical Physics. (In Russian, “Osnovnye differentsial'nye itravneniya matematicheskii fiziki”), 4th ed. Moscow: ONTI, 1936.
  • N. S. Koshlyakov, M. N. Smirnov, and E. B. Gliner, Differential Equations of Mathematical Physics. Amsterdam: North Holland Publ. Co., 1964 (transl. from Russian original 1951).
  • G. A. Eringen, “The finite Sturm Liouville transform,” Technical report no. 4, Office of Naval Research, USA, August 1953.
  • A. V. Luikov, Analytical Heat Diffusion Theory. New York, NY, USA: Academic Press, 1968 (translation of 2nd ed. of Russian version published in 1967).
  • M. D. Mikhailov, Nonstationary Temperature Fields in Skin. Moscow: Energiya, 1967.
  • M. N. Ozisik, Boundary Value Problems of Heat Conduction. Int. Textbooks Co, 1968.
  • M. D. Mikhailov and M. N. Özisik, Unified Analysis and Solutions of Heat and Mass Diffusion. New York, NY, USA: John Wiley, 1984; New version, Dover Publications, 1994.
  • M. N. Ozisik and R. L. Murray, “On the solution of linear diffusion problems with variable boundary condition parameters,” J. Heat Transfer, vol. 96c, pp. 48–51, 1974. DOI: 10.1115/1.3450139.
  • M. D. Mikhailov, “On the solution of the heat equation with time dependent coefficient,” Int. J. Heat Mass Transfer, vol. 18, pp. 344–345, 1975. DOI: 10.1016/0017-9310(75)90170-2.
  • R. M. Cotta, “Diffusion in media with prescribed moving boundaries: application to metals oxidation at high temperatures,” Proc. of the II Latin American Congress of Heat & Mass Transfer, vol. 1, pp. 502–513, São Paulo, Brasil, May, 1986.
  • R. M. Cotta and M. N. Ozisik, “Diffusion problems with general time-dependent coefficients,” Rev. Bras. Ciências Mecânicas, vol. 9, no. 4, pp. 269–292, 1987.
  • R. M. Cotta and C. A. C. Santos, “Transient diffusion problems with time-dependent boundary condition coefficients,” J. Eng. Physics, vol. 61, no. 5, pp. 1411–1418, 1991. Vol. also, in Russian, pp. 829–837, November 1991. DOI: 10.1007/BF00872263.
  • R. M. Cotta, “Hybrid numerical-analytical approach to nonlinear diffusion problems,” Num. Heat Transfer, Part B, vol. 17, no. 2, pp. 217–226, 1990. DOI: 10.1080/10407799008961740.
  • R. Serfaty and R. M. Cotta, “Integral transform solutions of diffusion problems with nonlinear equation coefficients,” Int. Comm. Heat Mass Tr., vol. 17, no. 6, pp. 851–864, 1990. DOI: 10.1016/0735-1933(90)90030-N.
  • R. Serfaty and R. M. Cotta, “Hybrid analysis of transient nonlinear convection-diffusion problems,” Int. J. Num. Meth. Heat Fluid Flow, vol. 2, pp. 55–62, 1992. DOI: 10.1108/eb017479.
  • A. J. K. Leiroz and R. M. Cotta, “On the solution of nonlinear elliptic convection-diffusion problems through the integral transform method,” Num. Heat Transfer, Part B, vol. 23, no. 4, pp. 401–411, 1993. DOI: 10.1080/10407799308914908.
  • J. B. Aparecido, R. M. Cotta, and M. N. Ozisik, “Analytical solutions to two-dimensional diffusion type problems in irregular geometries,” J. Franklin inst., vol. 326, pp. 421–434, 1989. DOI: 10.1016/0016-0032(89)90021-5.
  • J. B. Aparecido and R. M. Cotta, “Laminar flow inside hexagonal ducts,” Computational Mechanics, vol. 6, no. 2, pp. 93–100, 1990. DOI: 10.1007/BF00350515.
  • J. B. Aparecido and R. M. Cotta, “Laminar thermally developing flow inside right triangular ducts,” Appl. Scientific Res., vol. 49, no. 4, pp. 355–368, 1992. DOI: 10.1007/BF00419981.
  • L. A. Sphaier and R. M. Cotta, “Integral transform analysis of multidimensional eigenvalue problems within irregular domains,” Num. Heat Transfer, Part B, vol. 38, pp. 157–175, 2000.
  • R. M. Cotta and T. M. B. Carvalho, “Hybrid analysis of boundary layer equations for internal flow problems,” 7th Int. Conf. Num. Meth. Laminar Turbulent Flow, vol. 1, pp. 106–115, 1991. Part Stanford CA, July.
  • J. S. Perez Guerrero, and R. M. Cotta, “Integral transform solution for the lid-driven cavity flow problem in streamfunction-only formulation,” Int. J. Num. Meth. Fluids, vol. 15, no. 4, pp. 399–409, 1992. DOI: 10.1002/fld.1650150403.
  • R. M. Cotta, Integral Transforms in Computational Heat and Fluid Flow. CRC Press, Boca Raton, FL, USA, 1993.
  • R. M. Cotta, “Benchmark results in computational heat and fluid flow: the integral transform method,” Int. J. Heat Mass Transfer, vol. 37, pp. 381–394, 1994. Invited Paper, DOI: 10.1016/0017-9310(94)90038-8.
  • R. M. Cotta, and M. D. Mikhailov, Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation. New York, NY, USA: Wiley-Interscience, 1997.
  • R. M. Cotta, The Integral Transform Method in Thermal & Fluids Sciences & Engineering. New York, NY, USA: Begell House, 1998.
  • R. M. Cotta and M. D. Mikhailov, “Hybrid methods and symbolic computations,” in Handbook of Numerical Heat Transfer. 2nd ed. vol. 16, W.J. Minkowycz, E.M. Sparrow, and J.Y. Murthy, Eds. New York, NY, USA: John Wiley, 2006.
  • R. M. Cotta, D. C. Knupp, and C. P. Naveira-Cotta, Analytical Heat and Fluid Flow in Microchannels and Microsystems, Mechanical Eng. Series. New York, NY, USA: Springer, 2016.
  • I. F. Pinheiro, L. A. Sphaier, and L. S. de B. Alves, “Integral transform solution of integro-differential equations in conduction-radiation problems,” Numer. Heat Tr., Part A: Appl., vol. 73, no. 2, pp. 94–114, 2018. 2018, DOI: 10.1080/10407782.2017.1421359.
  • R. M. Cotta, D. C. Knupp, and J. N. N. Quaresma, “Analytical Methods in Heat Transfer,” In: Handbook of Thermal Science and Engineering. F.A. Kulacki, Eds., Springer, 2018.
  • R. M. Cotta, C. P. Naveira-Cotta, D. C. Knupp, J. L. Z. Zotin, P. C. Pontes, and A. P. Almeida, “Recent advances in computational-analytical integral transforms for convection-diffusion problems,” Heat Mass Tr., vol. 54, pp. 2475–2496, 2018.Invited Paper, DOI: 10.1007/s00231-017-2186-1.
  • J. S. Perez Guerrero and R. M. Cotta, “Integral transform solution of developing laminar duct flow in Navier–Stokes formulation,” Int. J. Num. Meth. Fluids, vol. 20, no. 11, pp. 1203–1213, 1995. DOI: 10.1002/fld.1650201102.
  • J. S. Perez Guerrero and R. M. Cotta, “Benchmark integral transform results for flow over a backward – facing step,” Comput. Fluids, vol. 25, no. 5, pp. 527–540, 1996. DOI: 10.1016/0045-7930(96)00005-9.
  • J. A. Lima, J. S. Perez Guerrero, and R. M. Cotta, “Hybrid solution of the averaged Navier-Stokes equations for turbulent flow,” Computational Mechanics, vol. 19, no. 4, pp. 297–307, 1997. DOI: 10.1007/s004660050178.
  • L. M. Pereira, J. S. Perez Guerrero, and R. M. Cotta, “Integral transformation of the Navier–Stokes equations in cylindrical geometry,” Comput. Mech., vol. 21, no. 1, pp. 60–70, 1998. DOI: 10.1007/s004660050283.
  • M. A. Leal, J. S. Perez Guerrero, and R. M. Cotta, “Natural convection inside two-dimensional cavities: the integral transform method,” Commun. Numer. Meth. Engng, vol. 15, no. 2, pp. 113–125, 1999. DOI: 10.1002/(SICI)1099-0887(199902)15:2<113::AID-CNM228>3.3.CO;2-0.
  • J. S. Perez Guerrero, J. N. N. Quaresma, and R. M. Cotta, “Simulation of laminar flow inside ducts of irregular geometry using integral transforms,” Comput. Mech., vol. 25, no. 4, pp. 413–420, 2000. DOI: 10.1007/s004660050488.
  • M. A. Leal, H. A. Machado, and R. M. Cotta, “Integral transform solutions of transient natural convection in enclosures with variable fluid properties,” Int. J. Heat Mass Transfer, vol. 43, no. 21, pp. 3977–3990, 2000. DOI: 10.1016/S0017-9310(00)00023-5.
  • L. M. Pereira, R. M. Cotta, and J. S. Perez Guerrero, “Analysis of laminar forced convection in annular ducts using integral transforms,” Hybrid Meth. Eng, vol. 2, no. 2, pp. 221–232, 2000.
  • R. Ramos, J. S. Perez Guerrero, and R. M. Cotta, “Stratified flow over a backward facing step:- hybrid solution by integral transforms,” Int. J. Num. Meth. Fluids, vol. 35, no. 2, pp. 173–197, 2001. DOI: 10.1002/1097-0363(20010130)35:2<173::AID-FLD88>3.0.CO;2-U.
  • C. A. M. Silva, E. N. Macedo, J. N. N. Quaresma, L. M. Pereira, and R. M. Cotta, “Integral transform solution of the Navier–Stokes equations in full cylindrical regions with streamfunction formulation,” Int. J. Num. Meth. Biomedical Eng, vol. 26, no. 11, pp. 1417–1434, 2010. DOI: 10.1002/cnm.1222.
  • C. F. T. Matt, J. N. N. Quaresma, and R. M. Cotta, “Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms,” Int. J. Heat Mass Tr., vol. 113, pp. 502–513, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.043.
  • F. A. Pontes, E. N. Macedo, C. S. Batista, J. A. Lima, and J. N. N. Quaresma, “Hybrid solutions obtained via integral transforms for magnetohydrodynamic flow with heat transfer in parallel plate channels,” Int. J. Num. Meth. Heat Fluid Flow, vol. 28, no. 7, pp. 1474–1505, 2018. DOI: 10.1108/HFF-02-2017-0076.
  • G. G. C. Lima, C. A. C. Santos, A. Haag, and R. M. Cotta, “Integral transform solution of internal flow problems based on navier-stokes equations and primitive variables formulation,” Int. J. Num. Meth. Eng, vol. 69, pp. 544–561, 2007. DOI: 10.1002/nme.1780.
  • M. F. Curi, R. M. Cotta, and J. S. Perez-Guerrero, “Alternative Integral Transform Solution of the Transient Incompressible Navier-Stokes Equations in Primitive Variables Formulation,” ENCIT 2014, 15th Brazilian Congress of Thermal Sciences and Engineering. Nov. 1013 2014, Belém, PA, Brazil.
  • J. N. N. Quaresma and R. M. Cotta, “Integral transform method for the Navier–Stokes equations in steady three-dimensional flow,” Proc. of the 10th ISTP - Int. Symp. on Transport Phenomena. pp. 281–287 Kyoto, Japan, Nov., 1997.
  • R. M. Cotta and M. D. Mikhailov, “The integral transform method,” Appl. Math. Model., vol. 17, no. 3, pp. 156–161, 1993. DOI: 10.1016/0307-904X(93)90041-E.
  • T. M. B. Carvalho, R. M. Cotta, and M. D. Mikhailov, “Flow development in the entrance regions of ducts,” Commun. Numer. Meth. Eng., vol. 9, no. 6, pp. 503–509, 1993. DOI: 10.1002/cnm.1640090608.
  • H. A. Machado and R. M. Cotta, “Integral transform method for boundary layer equations in simultaneous heat and fluid flow problems,” Int. J. Num. Meth. Heat Fluid Flow, vol. 5, pp. 225–237, 1995. DOI: 10.1108/EUM0000000004118.
  • M. A. H. Bolivar, P. L. C. Lage, and R. M. Cotta, “Integral transform solution of the laminar thermal boundary layer problem for flow past two-dimensional and axisymmetric bodies,” Numer. Heat Tr., Part A, vol. 33, no. 7, pp. 779–797, 1998. DOI: 10.1080/10407789808913966.
  • R. M. Cotta and L. C. G. Pimentel, “Developing turbulent duct flow: - hybrid solution via integral transforms and algebraic models,” Int. J. Num. Meth. Heat Fluid Flow, vol. 8, no. 1, pp. 10–26, 1998. DOI: 10.1108/09615539810197907.
  • D. C. Knupp, R. M. Cotta, and C. P. Naveira-Cotta, “Heat transfer in microchannels with upstream–downstream regions coupling and wall conjugation effects,” Numer. Heat Transfer, Part B, vol. 64, no. 5, pp. 365–387, 2013. DOI: 10.1080/10407790.2013.810535.
  • D. C. Knupp, C. P. Naveira-Cotta, and R. M. Cotta, “Theoretical–experimental analysis of conjugated heat transfer in nanocomposite heat spreaders with multiple microchannels,” Int. J. Heat Mass Transf, vol. 74, pp. 306–318, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.005.
  • D. C. Knupp, R. M. Cotta, C. P. Naveira-Cotta, and S. Kakaç, “Transient conjugated heat transfer in microchannels: Integral transforms with single domain formulation,” Int. J. Therm. Sci, vol. 88, pp. 248–257, 2015. DOI: 10.1016/j.ijthermalsci.2014.04.017.
  • D. C. Knupp, R. M. Cotta, and C. P. Naveira-Cotta, “Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms,” Int. J. Heat Mass Transf, vol. 82, pp. 479–489, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.007.
  • A. P. Almeida, C. P. Naveira-Cotta, and R. M. Cotta, “Integral transforms for transient three-dimensional heat conduction in heterogeneous media with multiple geometries and materials, Paper # IHTC16-24583,” Proc. of the 16th International Heat Transfer Conference – IHTC16. 2018, Beijing, China, August 10th-15th.
  • K. M. Lisboa and R. M. Cotta, “Hybrid integral transforms for flow development in ducts partially filled with porous media,” Proc. ROY. Soc. A – Math., Phys Eng. Sci., vol. 474, pp. 1–20, 2018.
  • K. M. Lisboa and R. M. Cotta, “On the mass transport in membraneless flow batteries of flow-by configuration,” Int. J. Heat Mass Tr., vol. 122, pp. 954–966, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.002.
  • R. M. Cotta, J. Su, A. C. Pontedeiro, and K. M. Lisboa, “Computational-analytical integral transforms and lumped-differential formulations: benchmarks and applications in nuclear technology, invited plenary lecture,” Int. Symp. on Turbulence, Heat and Mass Transfer, THMT-ICHMT. Begell House, Rio de Janeiro, July 10–13, 2018.
  • K. M. Lisboa, J. Su, and R. M. Cotta, “Single domain integral transforms analysis of natural convection in cavities partially filled with heat generating porous medium,” Num. Heat Transfer, Part A, vol. 74, no. 3, pp. 1068–1086, 2018. DOI: 10.1080/10407782.2018.1511141.
  • S. C. Hirata, B. Goyeau, D. Gobin, and R. M. Cotta, “Stability of natural convection in composite enclosures using integral transforms,” Num. Heat Transfer, Part B, vol. 50, no. 5, pp. 409–424, 2006. DOI: 10.1080/10407790600682730.
  • S. C. Hirata, B. Goyeau, D. Gobin, M. Carr, and R. M. Cotta, “Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling,” Int. J. Heat Mass Transf, vol. 50, no. 7/8, pp. 1356–1367, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.038.
  • S. C. Hirata, B. Goyeau, D. Gobin, M. Chandesris, and D. Jamet, “Stability of natural convection in superposed fluid and porous layers: equivalence of the one- and two-domain approaches,” Int. J. Heat Mass Tr., vol. 52, no. 1/2, pp. 533–536, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.045.
  • L. S. B. Alves, and R. M. Cotta, “Transient natural convection inside porous cavities: hybrid numerical-analytical solution and mixed symbolic-numerical computation,” Num. Heat Transfer, Part A, vol. 38, no. 1, pp. 89–110, 2000.
  • H. Luz Neto, J. N. N. Quaresma, and R. M. Cotta, “Natural convection in three-dimensional porous cavities: integral transform method,” Int. J. Heat Mass Tr., vol. 45, no. 14, pp. 3013–3032, 2002. DOI: 10.1016/S0017-9310(02)00015-7.
  • L. S. B. Alves, R. M. Cotta, and J. Pontes, “Stability analysis of natural convection in porous cavities through integral transforms,” Int. J. Heat Mass Transfer, vol. 45, pp. 1185–1195, 2002. DOI: 10.1016/S0017-9310(01)00231-9.
  • H. Luz Neto, J. N. N. Quaresma, and R. M. Cotta, “Integral transform solution for transient natural convection in three-dimensional porous cavities: aspect ratio effects,” Int. J. Heat Mass Tr., vol. 49, no. 23/24, pp. 4687–4695, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.04.028.
  • R. M. Cotta, D. C. Knupp, C. P. Naveira-Cotta, L. Sphaier, and J. N. N. Quaresma, “Unified integral transforms algorithm for solving multidimensional nonlinear convection-diffusion problems,” Num. Heat Transfer-Part A, vol. 63, pp. 1–27, 2013.
  • R. M. Cotta, D. C. Knupp, C. P. Naveira-Cotta, L. Sphaier, and J. N. N. Quaresma, “The unified integral transforms (unit) algorithm with total and partial transformation,” Comput. Thermal Sci., vol. 6, no. 6, pp. 507–524, 2014. DOI: 10.1615/ComputThermalScien.2014008663.
  • R. M. Cotta, C. P. Naveira-Cotta, and D. C. Knupp, “Convective eigenvalue problems for convergence enhancement of eigenfunction expansions in convection–diffusion problems,” ASME J. Thermal Sci. Eng. Appl., vol. 10, no. 2, pp. 021009, 2017. DOI: 10.1115/1.4037576.
  • R. M. Cotta, C. P. Naveira-Cotta, and D. C. Knupp, “Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions,” Int. J. Num. Meth. Heat Fluid Flow, vol. 26, no. 3/4, pp. 767–789, 2016. Invited Paper, 25th Anniversary Special Issue, Volnos. DOI: 10.1108/HFF-08-2015-0309.
  • R. M. Cotta, C. P. Naveira-Cotta, and D. C. Knupp, “Enhanced eigenfunction expansions in convection-diffusion problems with multiscale space variable coefficients,” Num. Heat Transfer, Part A - applicat., vol. 70, no. 5, pp. 492–512, 2016. DOI: 10.1080/10407782.2016.1177342.
  • R. M. Cotta and J. E. V. Gerk, “Mixed finite difference/integral transform approach for parabolic-hyperbolic problems in transient forced convection,” Numerical Heat Transfer - Part B: Fundamentals, vol. 25, pp. 433–448, 1994. DOI: 10.1080/10407799408955929.
  • S. Wolfram, Mathematica, Version 11. Champaign: Wolfram Research Inc., 2017.
  • J. E. R. Coney and M. A. I. El-Shaarawi, “A contribution to the numerical solution of developing laminar flow in the entrance region of concentric annuli with rotating inner walls,” ASME j. Fluids Engineering, vol. 96, no. 4, pp. 333–340, 1974. Series I, DOI: 10.1115/1.3447166.
  • Amorim, N. S. Hybrid Solutions in the Analysis of Laminar Flow in Concentric Annular Ducts with Inner Wall Rotation. MSc dissertation (In Portuguese), Graduate Program in Chemical Engineering, Federal University of Pará, UFPA, Belém, Brazil, 2009.
  • IMSL Library Math/Lib. 1991, Houston, TX: Rogue Wave Software.
  • J. J. G. Silva, E. N. Macedo, J. N. N. Quaresma, and R. M. Cotta, “Hybrid integral transform solution for MHD natural convection in cavities,” 21st International Congress of Mechanical Engineering, COBEM-2011. Natal, RN, Brazil: ABCM, , October 2011.
  • M. J. Colaço, G. S. Dulikravich, and H. R. B. Orlande, “Magnetohydrodynamic using radial basis functions,” Int. J. Heat Mass Tr., vol. 52, no. 25/26, pp. 5932–5939, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.08.009.
  • V. M. Job and S. R. Gunakala, “Unsteady MHD free convection nanofluid flows within a wavy trapezoidal enclosure with viscous and joule dissipation effects,” Numer. Heat Tr., Part A: Applicat., vol. 69, no. 4, pp. 421–443, 2016. DOI: 10.1080/10407782.2015.1080946.
  • J. H. Son and I. S. Park, “Numerical study of MHD natural convection in a rectangular enclosure with an insulated block,” Numer. Heat Tr., Part A: Appl., vol. 71, no. 10, pp. 1004–1022, 2017. DOI: 10.1080/10407782.2017.1330090.
  • A. J. Ahrar and M. H. Djavareshkian, “Novel hybrid lattice Boltzmann technique with TVD characteristics for simulation of heat transfer and entropy generations of MHD and natural convection in a cavity,” Numer. Heat Transfer, Part B: Fundamentals, vol. 72, no. 6, pp. 431–449, 2017. DOI: 10.1080/10407790.2017.1409528.
  • S. S. Mendu and P. K. Das, “Fluid flow in a cavity driven by an oscillating lid – a simulation by Lattice–Boltzmann method,” Eur. J. Mech. B/Fluids, vol. 39, pp. 59–70, 2013. DOI: 10.1016/j.euromechflu.2012.12.002.
  • K. M. Lisboa, J. Su, and R. M. Cotta, “Vector eigenfunction expansion in the integral transform solution of transient natural convection,” Int. J. Num. Meth. Heat Fluid Flow. DOI: 10.1108/HFF-10-2018-0543.
  • O. D. Burggraf, “Analytical and numerical studies of the structure of steady separated flows,” J. Fluid Mech, vol. 24, no. 1, pp. 113–151, 1966. DOI: 10.1017/S0022112066000545.
  • U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comp. Phys., vol. 48, no. 3, pp. 387–411, 1982. DOI: 10.1016/0021-9991(82)90058-4.
  • M. Aydin and R. T. Fenner, “Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers,” Int. J. Numer. Meth. Fluids, vol. 37, no. 1, pp. 45–64, 2001. DOI: 10.1002/fld.164.
  • J. W. Lee, M.-A. Goulet, and E. Kjeang, “Microfluidic redox battery,” Lab Chip, vol. 13, no. 13, pp. 2504 2013. DOI: 10.1039/c3lc50499a.
  • K. M. Lisboa et al., “Mass transport enhancement in Redox flow batteries with corrugated fluidic networks,” J. Power Sour., vol. 359, pp. 322–331, 2017. DOI: 10.1016/j.jpowsour.2017.05.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.