Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 2
786
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The characteristic boundary condition in pressure-based methods

, &
Pages 43-59 | Received 03 Mar 2019, Accepted 12 Jul 2019, Published online: 25 Jul 2019

References

  • A. Jameson, “Solution of the Euler Equations For Two Dimensional Transonic Flow by a Multigrid Method,” Appl. Math. Comput., vol. 13, no. 3-4, pp. 327–356, 1983. DOI: 10.1016/0096-3003(83)90019-X.
  • A. Jameson, W. Schmidt, and E. Turkel, “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes,” AIAA 14th Fluids and Plasma Dynamic Conference, Paper 81-1259, Palo Alto, California, June 23–25, 1981.
  • A. Jameson, and T. J. Baker, “Solution of the Euler Equations for Complex Configurations”. Proc. 6th AIAA Computational Fluid Dynamics Conference,” AIAA Paper, pp. 293–302, 1983. 83-1929, Danvers, July
  • M. J. Berger, and A. Jameson, “Automatic Adaptive Grid Refinement for the Euler Equations”. AIAA J., vol. 23, no. 4, pp. 561–568, 1985. DOI: 10.2514/3.8951.
  • A. Jameson, and S. Wolfgang, “Some Recent Developments in Numerical Methods for Transonic Flows,” Computer Methods Appl. Mech. Eng., vol. 51, no. 1-3, pp. 467–493, 1985. DOI: 10.1016/0045-7825(85)90043-X.
  • A. Rizzi, and L. E. Eriksson, “Computation of inviscid incompressible flow with rotation,” J. Fluid Mech., vol. 153, no. 1, pp. 275–312, 1985. DOI: 10.1017/S0022112085001264.
  • D. Choi, and C. L. Merkle, “Application of time-iterative schemes to incompressible flow,” AIAA J., vol. 23, no. 10, pp. 1518–1524, 1985. DOI: 10.2514/3.9119.
  • Y. H. Choi, and C. L. Merkle, “The application of preconditioning to viscous flows,” Comput. Phys., vol. 105, no. 2, pp. 207–223, 1993. DOI: 10.1006/jcph.1993.1069.
  • D. L. Tweedt, R. V. Chima, and E. Turkel, Preconditioning for Numerical Simulation of Low Mach Number Three-Dimensional Viscous Turbomachinary Flows, Technical Paper 97-1828. AIAA Press, Washington, DC, 1997.
  • J. M. Weiss, and W. A. Simith, “Preconditioning applied to variable and constant density flows,” AIAA J., vol. 33, no. 11, pp. 2050–2057, 1995. DOI: 10.2514/3.12946.
  • C. L. Merkle, J. Y. Sullivan, P. E. O. Buelow, and S. Venkateswaran, “Computation of flows with arbitrary equations of state,” AIAA J., vol. 36, no. 4, pp. 515–521, 1998. DOI: 10.2514/2.424.
  • J. R. Edwards, and M. S. Liou, “Low-diffusion flux-splitting methods for flows at all speeds,” AIAA J., vol. 36, no. 9, pp. 1610–1617, 1998. DOI: 10.2514/2.587.
  • S. V. Patankar, and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transf., vol. 15, no. 10, pp. 1787–1806, 1972. DOI: 10.1016/0017-9310(72)90054-3.
  • J. P. Van Doormaal, and G. D. Raithby, “Enhancement of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transfer, vol. 7, pp, pp. 147–163, 1984. DOI: 10.1080/01495728408961817.
  • S. Acharya, and F. Moukalled, “Improvements to incompressible flow calculation on a non-staggered curvilinear grid,” Numer. Heat Transfer, Part B Fundam., vol. 15, pp, pp. 131–152, 1989. DOI: 10.1080/10407798908944897.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, Hemisphere Publishing Corporation, 1980.
  • A. Ashrafizadeh, B. Alinia, and P. Mayeli, “A New Co-Located Pressure-Based Discretization Method for the Numerical Solution of Incompressible Navier-Stokes Equations,” Numer. Heat Transfer, Part B Fundam., vol. 67, no. 6, pp. 563–589, 2015. DOI: 10.1080/10407790.2014.992094.
  • M. Darwish, A. Abdel Aziz, and F. Moukalled, “A Coupled Pressure-Based Finite-Volume Solver for Incompressible Two-Phase Flow,” Numer. Heat Transfer, Part B Fundam., vol. 67, no. 1, pp. 47–74, 2015. DOI: 10.1080/10407790.2014.949500.
  • F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®. Cham: Springer International Publishing, 2015.
  • K. C. Karki, A calculation procedure for viscous flows at all speeds in complex geometries, Ph.D. thesis (University of Minnesota, 1986).
  • C. H. Marchi, and C. R. Maliska, “A non-orthogonal finite-volume methods for the solution of all speed flows using co-located variables,” Numer. Heat Transfer, Part B Fundam., vol. 26, no. 3, pp. 293–311, 1994. DOI: 10.1080/10407799408914931.
  • I. Demirdzic, Z. Lilek, and M. Peric, “A Collocated finite volume method for predicting flows at all speeds,” Int. J. Numer. Methods Fluids, vol. 16, pp. 1029–1050, 1993. DOI: 10.1002/fld.1650161202.
  • F. Moukalled, and M. Darwish, “A unified formulation of the segregated class of algorithms for fluid flow at all speeds,” Numer. Heat Transfer, Part B Fundam., vol. 37, no. 1, pp. 103–139, 2000. DOI: 10.1080/104077900275576.
  • A. Nouri-Borujerdi, and A. S. Ghazani, “A pressure-based algorithm for internal compressible turbulent flows through a geometrical singularity,” Numer. Heat Transfer, Part B Fundam., vol. 72, no. 1, pp. 82–107, 2017. DOI: 10.1080/10407790.2019.1612665.
  • I. Sezai, “Implementation of boundary conditions in pressure-based finite volume methods on unstructured grids,” Numer. Heat Transfer, Part B Fundam., vol. 75, no. 2, pp. 127–143, 2019. DOI: 10.1080/10407790.2017.1338077.
  • H. Tan, “Applying the free-slip boundary condition with an adaptive cartesian cut-cell method for complex geometries,” Numer. Heat Transfer, Part B Fundam., vol. 74, no. 4, pp. 661–684, 2018. DOI: 10.1080/10407790.2018.1562770.
  • F. Moukalled, L. Mangani, and M. Darwish, “Implementation of boundary conditions in the finite volume pressure-based method-part I: segregated solvers,” Numer. Heat Transfer, Part B Fundam., vol. 69, no. 6, pp. 534–562, 2016. DOI: 10.1080/10407790.2016.1138748.
  • Pulliam, T. “Characteristic Boundary Conditions for the Euler Equations,” Proceeding of Symposium on Numerical Boundary Condition Procedures NASA CP–2201, pp. 165–181, 1981.
  • J. Carlson, “Inflow/Outflow Boundary Conditions with Application to FUN3D,” NASA/TM-2011-217181, 2011.
  • A. Jameson, and D. Mavriplis, “Finite Volume Solution of the Two-Dimensional Euler Equations on a Regular Triangular Mesh,” AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14–17, AIAA-85-0435, 1985.
  • S. R. Mathur, and J. Y. Murthy, “All Speed Flows on Unstructured Meshes Using a Pressure Correction Approach,” AIAA 14th Computational Fluid Dynamics Conference-Norfolk, VA. USA, November 1–5, 1999 (paper # AIAA-99-3365).
  • P. R. Spalart, and S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows,” Recherche Aerospatiale, no. 1, pp. 5–21, 1994.
  • P. R. Spalart, “Trends in Turbulence Treatments,” Fluids 2000 Conference and Exhibit, paper no. AIAA 2000-2306, June 2000.
  • P. R. Spalart, and C. L. Rumsey, “Effective inflow conditions for turbulence models in aerodynamic calculations,” AIAA J., vol. 45, no. 10, pp. 2544–2553, 2007. DOI: 10.2514/1.29373.
  • I. Demirdzic, A Finite Volume Method for Computation of Fluid Flow in Complex Geometries, Ph.D. Thesis, University of London, 1982.
  • S. Muzaferija, Adaptive Finite Volume Method for Flow Predictions Using Unstructured Meshes and Multigrid Approach, Ph.D. thesis, University of London, 1994.
  • I. Demirdzic, and S. Musaferija, “Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology,” Comput. Methods Appl. Mech. Eng., vol. 125, pp. 235–255, 1995.
  • S. R. Mathur, and J. Y. Murthy, “A pressure-based method for unstructured meshes,” Numer. Heat Transfer, Part B Fundam., vol. 31, no. 2, pp. 195–215, 1997. DOI: 10.1080/10407799708915105.
  • H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flow, PhD. thesis, Imperial College, London, 1996.
  • I. Demirdzic, “On the discretization of the diffusion term in finite-volume continuum mechanics,” Numer. Heat Transfer, Part B Fundam., vol. 68, no. 1, pp. 1–10, 2015.
  • B. P. Leonard, “Locally modified quick scheme for highly convective 2-D and 3-D flows,” in Numerical Methods in Laminar and Turbulent Flows, vol. 5, C. Taylor and K. Morgan, (Eds.). Swansea, U.K.: Pineridge Press, 1987, pp. 35–47.
  • S. G. Rubin, and P. K. Khosla, “Polynomial interpolation method for viscous flow calculations,” J. Comput. Phys., vol. 27, pp. 153–168, 1982.
  • F. Moukalled, and M. Darwish, “Transient schemes for capturing interfaces of free-surface flows,” Numer. Heat Transfer, Part B Fundam., vol. 61, no. 3, pp. 171–203, 2012. DOI: 10.1080/10407790.2012.666145.
  • C. M. Rhie, and W. L. Chow, “A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation,” AIAA J., vol. 21, no. 11, pp. 1525–1532, 1983. DOI: 10.2514/3.8284.
  • Turbulence Modeling Resource. Available: https://turbmodels.larc.nasa.gov/index.html
  • K. Wieghardt, and W. Tillman, “On the turbulent friction layer for rising pressure,” NACA TM-1314, 1951.
  • W. D. Bachalo, and D. A. Johnson, “Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model,” AIAA J., vol. 24, no. 3, pp. 437–443, 1986. DOI: 10.2514/3.9286.
  • N. Gregory, and C. L. O'reilly, ” Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, including the Effects of Upper-Surface Roughness Simulating Hoar Frost,” Aeronautical Research Council, Aerodynamics Division N.P.L., Reports and Memoranda No. 3726, London, January, 1970.
  • V. Schmitt, and F. Charpin, “Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers,” Experimental Data Base for Computer Program Assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.