Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 3
194
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Verification and validation of a variable–density solver for fire safety applications

, &
Pages 107-129 | Received 19 Apr 2019, Accepted 19 Jul 2019, Published online: 31 Jul 2019

References

  • A. Shabbir and W. K. George, “Experiments on a round turbulent buoyant plume,” J. Fluid Mech, vol. 275, pp. 1–32, 1994. DOI:10.1017/S0022112094002260.
  • B. M. Cetegan and T. A. Ahmed, “Experiments on the periodic instability of buoyant plumes and pool fires,” Combust. Flame, vol. 93, pp. 157–184, 1993. DOI:10.1016/0010-2180(93)90090-P.
  • A. F. Ghoniem, I. Lakkis, and M. Soteriou, “Numerical simulation of the dynamics of large fire plumes and the phenomenon of puffing,” Proc. 26th Symposium (International) on Combustion, 1993. DOI:10.1016/S0082-0784(96)80375-4.
  • B. M. Cetegen and K. D. Kasper, “Experiments on the oscillatory behavior of buoyant plumes of helium and helium-air mixtures,” Phys. Fluids, vol. 8, no. 11, pp. 2974–2984, 1996. DOI:10.1063/1.869075.
  • P. E. DesJardin, T. J. O’Hern, and S. R. Tieszen, “Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume,” Phys. Fluids, vol. 16, no. 6, pp. 1866–1883, 2004. DOI:10.1063/1.1689371.
  • S. R. Tieszen, H. Pitsch, G. Blanquart, and S. Abarzhi, “Toward the development of a les-sgs closure model for buoyant plumes,” Proc. of the Summer Program, Center for Turbulence Research. Stanford, 2004.
  • “Firefoam.” http://code.google.com/p/firefoam-dev.
  • “Fire dynamics simulator.” http://fire.nist.gov/fds.
  • A. C. Y. Yuen, G. H. Yeoh, V. Timchenko, and T. Barber, “Les and multi-step chemical reaction in compartment fires,” Numer. Heat Transf., A: Appl., vol. 68, no. 7, pp. 711–736, 2015. DOI:10.1080/10407782.2015.1012886.
  • A. C. Y. Yuen, G. H. Yeoh, V. Timchenko, S. C. P. Cheung, and T. Chen, “Study of three les subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires,” Numer. Heat Transf., A: Appl., vol. 69, no. 11, pp. 1223–1241, 2016. DOI:10.1080/10407782.2016.1139903.
  • W. L. Oberkampf and T. G. Trucano, “Verification and validation in computational fluid dynamics,” Rev. Article Prog. Aero. Sci, vol. 38, no. 3, pp. 209–272, 2002. DOI:10.1016/S0376-0421(02)00005-2.
  • L. Shunn, F. Ham, and P. Moin, “Verification of variable-density flow solvers using manufactured solutions,” J. Comput. Phys, vol. 231, no. 9, pp. 3801–3827, 2012. DOI:10.1016/j.jcp.2012.01.027.
  • R. Mullyadzhanov, E. Palkin, B. Nieno, L. Vervisch, and K. Hanjali, “Verification of a low mach variable-density navier-stokes solver for turbulent combustion,” J. Phys: Conf. Ser., vol. 754, pp. 062005, 2016. DOI:10.1088/1742-6596/754/6/062005.
  • T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech., vol. 544, pp. 143–171, 2005. DOI:10.1017/S0022112005006567.
  • G. Blanquart and H. Pitsch, “Large-eddy simulation of a turbulent buoyant helium plume,” in Annual Research Briefs, Center for Turbulence Research, Ed., 2008, pp. 245–252.
  • A. Brown et al., “Proceedings of the first workshop organized by the iafss working group on measurement and computation of fire phenomena (macfp),” Fire Safety J, vol. 101, pp. 1–17, 2018. DOI:10.1016/j.firesaf.2018.08.009.
  • W. Chung and C. B. Devaud, “Buoyancy corrected k−ϵ models and large eddy simulation applied to a large axisymmetric helium plume,” Int. J. Num. Meth. Fluids, vol. 58, pp. 57–89, 2008. DOI:10.1002/fld.1720.
  • G. Maragkos, P. Rauwoens, Y. Wang, and B. Merci, “Large eddy simulations of the flow in the near-field region of a turbulent buoyant helium plume,” Flow Turbulence Combust, vol. 90, no. 3, pp. 511–543, 2013. DOI:10.1007/s10494-012-9437-5.
  • “Code_Saturne.” http://www.code-saturne.org.
  • B. C. Wang, E. Yee, D. J. Bergstrom, and O. Iida, “New dynamic subgrid-scale heat flux models for large-eddy simulation of thermal convection based on the general gradient diffusion hypothesis,” J. Fluid Mech, vol. 604, pp. 125–163, 2008. DOI:10.1017/S0022112008001079.
  • Y. Fabre and G. Balarac, “Development of a new dynamic procedure for the clark model of the subgrid-scale scalar flux using the concept of optimal estimator,” Phys. Fluids, vol. 23, no. 11, pp. 115103, 2011. DOI:10.1063/1.3657090.
  • S. Peng and L. Davidson, “On a subgrid-scale heat flux model for large eddy simulation of turbulent thermal flow,” Int. J. Heat Mass Transf., vol. 45, no. 7, pp. 1393–1405, 2002. DOI:10.1016/S0017-9310(01)00254-X.
  • C. W. Higgins, M. B. Parlange, and C. Meneveau, “The heat flux and the temperature gradient in the lower atmosphere,” Geophys. Res. Lett, vol. 31, no. 22, pp. 1–5, 2004. DOI:10.1029/2004GL020053.
  • B. C. Wang, E. Yee, J. Yin, and D. J. Bergstrom, “A general dynamic linear tensor-diffusivity subgrid-scale heat flux model for large-eddy simulation of turbulent thermal flows,” Numer. Heat Tr. B, vol. 51, no. 3, pp. 205–227, 2007. DOI:10.1080/10407790601102274.
  • B. C. Wang, E. Yee, J. Yin, and D. J. Bergstrom, “A complete and irreducible dynamic sgs heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection,” Int. J. Heat Fluid Flow, vol. 28, no. 6, pp. 1227–1243, 2007. DOI:10.1016/j.ijheatfluidflow.2007.06.001.
  • P. Moin, K. Squires, W. Cabot, and S. Lee, “A dynamic subgrid-scale model for compressible turbulence and scalar transport,” Phys. Fluids A, vol. 3, no. 11, pp. 2746–2757, 1991. DOI:10.1063/1.858164.
  • C. Pierce and P. Moin, “Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion,” J. Fluid Mech., vol. 504, pp. 73–97, 2004. DOI:10.1017/S0022112004008213.
  • D. K. Lilly, “A proposed modification of the germano subgrid-scale closure method,” Phys. Fluids A, vol. 4, no. 3, pp. 633–635, 1992. DOI:10.1063/1.858280.
  • B. J. Daly and F. H. Harlow, “Transport equations in turbulence,” Phys. Fluids, vol. 13, no. 11, pp. 2634–2649, 1970. DOI:10.1063/1.1692845.
  • K. W. Bedford and W. K. Yeo, “Conjective filtering procedures in surface water flow and transport,” in Large Eddy Simulation of Complex Engineering and Geophysical Flows. B. Galperin and S. A. Orszag, Eds. Cambridge University Press, 1993, pp. 523–537.
  • B. Vreman, B. Geurts, and H. Kuerten, “On the formulation of the dynamic mixed subgrid scale model,” Phys. Fluids, vol. 6, no. 12, pp. 4057, 1994. DOI:10.1063/1.868333.
  • H. Lu, and F. Port-Agel, “A modulated gradient model for scalar transport in large-eddy simulation of the atmospheric boundary layer,” Phys. Fluids, vol. 25, no. 015220, 2013. DOI:10.1063/1.4774342.
  • B. Vreman, B. Geurts, and H. Kuerten, “Large-eddy simulation of the turbulent mixing layer,” J. Fluid Mech., vol. 339, pp. 357–390, 1997. DOI:10.1017/S0022112097005429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.