Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
205
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A semi-analytical boundary collocation solver for the inverse Cauchy problems in heat conduction under 3D FGMs with heat source

, , &
Pages 311-327 | Received 05 Jun 2019, Accepted 04 Sep 2019, Published online: 20 Sep 2019

References

  • A. Sutradhar and G. H. Paulino, “The simple boundary element method for transient heat conduction in functionally graded materials,” Comput. Meth. Appl. Mech. Eng., vol. 193, no. 42–44, pp. 4511–4539, 2004. DOI: 10.1016/j.cma.2004.02.018.
  • Q. Liu and P. J. Ming, “A high-order control volume finite element method for 3-D transient heat conduction analysis of multilayer functionally graded materials,” Numer. Heat Transfer B, vol. 73, no. 6, pp. 363–385, 2018. DOI: 10.1080/10407790.2018.1470425.
  • Z. J. Fu, Q. Xi, W. Chen, and A. H. D. Cheng, “A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations,” Comput. Math. Appl., vol. 76, no. 4, pp. 760–773, 2018. DOI: 10.1016/j.camwa.2018.05.017.
  • F. J. Wang, C. S. Liu, and W. Z. Qu, “Numerical analysis of heat transfer in arbitrary plane domains using a novel Trefftz energy method,” Numer. Heat Transfer B, vol. 73, no. 3, pp. 146–154, 2018. DOI: 10.1080/10407790.2018.1444872.
  • D. Prestini, G. Filippini, P. Zdanski, and M. Vaz, “Fundamental approach to anisotropic heat conduction using the element-based finite volume method,” Numer. Heat Transfer B, vol. 71, no. 4, pp. 327–345, 2017. DOI: 10.1080/10407790.2017.1293966.
  • L. Qiu, F. J. Wang, and J. Lin, “A meshless singular boundary method for transient heat conduction problems in layered materials,” Comput. Math. Appl., 2019. DOI: 10.1016/j.camwa.2019.05.027.
  • M. Cui, B. Xu, W. Feng, Y. Zhang, X. Gao, and H. Peng, “A radial integration boundary element method for solving transient heat conduction problems with heat sources and variable thermal conductivity,” Numer. Heat Transfer B, vol. 73, no. 1, pp. 1–18, 2018. DOI: 10.1080/10407790.2017.1420319.
  • J. P. Li, Z. J. Fu, W. Chen, and X. T. Liu, “A dual-level method of fundamental solutions in conjunction with kernel-independent fast multipole method for large-scale isotropic heat conduction problems,” Adv. Appl. Math. Mech., vol. 11, no. 2, pp. 501–517, 2019. DOI: 10.4208/aamm.OA-2018-0148.
  • C. S. Liu, W. Z. Qu, and Y. M. Zhang, “Numerically solving twofold ill-posed inverse problems of heat equation by the adjoint trefftz method,” Numer. Heat Transfer B, vol. 73, no. 1, pp. 48–61, 2018. DOI: 10.1080/10407790.2017.1420317.
  • J. Hadamard and P. M. Morse, “Lectures on Cauchys problem in linear partial differential equations,” Phys. Today, vol. 6, no. 8, pp. 18–18, 1953. DOI: 10.1063/1.3061337.
  • C. M. Fan and P. W. Li, “Numerical solutions of direct and inverse stokes problems by the method of fundamental solutions and the Laplacian decomposition,” Numer. Heat Transfer B, vol. 68, no. 3, pp. 204–223, 2015. DOI: 10.1080/10407790.2015.1021579.
  • H. Chen, J. Frankel, and M. Keyhani, “Nonlinear inverse heat conduction problem of surface temperature estimation by calibration integral equation method,” Numer. Heat Transfer B, vol. 73, no. 5, pp. 263–291, 2018. DOI: 10.1080/10407790.2018.1464316.
  • Y. Sun, “Indirect boundary integral equation method for the Cauchy problem of the Laplace equation,” J. Sci. Comput., vol. 71, no. 2, pp. 469–498, 2017. DOI: 10.1007/s10915-016-0308-4.
  • L. C. Chen and X. L. Li, “Boundary element-free methods for exterior acoustic problems with arbitrary and high wavenumbers,” Appl. Math. Model., vol. 72, pp. 85–103, 2019. DOI: 10.1016/j.apm.2019.03.017.
  • L. C. Chen, X. Liu, and X. L. Li, “The boundary element-free method for 2D interior and exterior Helmholtz problems,” Comput. Math. Appl., vol. 77, no. 3, pp. 846–864, 2019. DOI: 10.1016/j.camwa.2018.10.022.
  • F. Zhou, Y. Li, J. Zhang, C. Huang, and C. J. Lu, “A time step amplification method in boundary face method for transient heat conduction,” Int. J. Heat Mass Transfer, vol. 84, pp. 671–679, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.060.
  • F. J. Wang, C. M. Fan, Q. S. Hua, and Y. Gu, “Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations,” Appl. Math. Comput., vol. 364, pp. 124658, 2020. DOI: 10.1016/j.amc.2019.124658.
  • F. L. Yang, L. Yan, and L. Ling, “Doubly stochastic radial basis function methods,” J. Comput. Phys., vol. 363, pp. 87–97, 2018. DOI: 10.1016/j.jcp.2018.02.042.
  • W. Z. Qu, “A high accuracy method for long-time evolution of acoustic wave equation,” Appl. Math. Lett., vol. 98, pp. 135–141, 2019. DOI: 10.1016/j.aml.2019.06.010.
  • S. W. Zhou, X. Y. Zhuang, H. Zhu, and T. Rabczuk, “Phase field modelling of crack propagation, branching and coalescence in rocks,” Theor. Appl. Fract. Mech., vol. 96, pp. 174–192, 2018. DOI: 10.1016/j.tafmec.2018.04.011.
  • S. W. Zhou, X. Y. Zhuang, and T. Rabczuk, “Phase-field modeling of fluid-driven dynamic cracking in porous media,” Comput. Meth. Appl. Mech. Eng., vol. 350, pp. 169–198, 2019. DOI: 10.1016/j.cma.2019.03.001.
  • Y. Gu, X. Q. He, W. Chen, and C. Z. Zhang, “Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method,” Comput. Math. Appl., vol. 75, no. 1, pp. 33–44, 2018. DOI: 10.1016/j.camwa.2017.08.030.
  • J. Liang, Z. Liu, L. Huang, and G. Yang, “The indirect boundary integral equation method for the broadband scattering of plane P, SV and Rayleigh waves by a hill topography,” Eng. Anal. Bound. Elem., vol. 98, pp. 184–202, 2019. DOI: 10.1016/j.enganabound.2018.09.018.
  • G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math., vol. 9, no. 1/2, pp. 69–95, 1998.
  • C. J. S. Alves, “On the choice of source points in the method of fundamental solutions,” Eng. Anal. Bound. Elem., vol. 33, no. 12, pp. 1348–1361, 2009. DOI: 10.1016/j.enganabound.2009.05.007.
  • W. Chen and M. Tanaka, “A meshless, integration-free, and boundary-only RBF technique,” Comput. Math. Appl., vol. 43, no. 3-5, pp. 379–391, 2002. DOI: 10.1016/S0898-1221(01)00293-0.
  • C. M. Fan, Y. C. Liu, H. F. Chan, and S. S. Hsiao, “Solutions of boundary detection problem for modified Helmholtz equation by Trefftz method,” Inverse Probl. Sci. Eng., vol. 22, no. 2, pp. 267–281, 2014. DOI: 10.1080/17415977.2013.773325.
  • F. Yang, L. Yan, and T. Wei, “Reconstruction of the corrosion boundary for the laplace equation by using a boundary collocation method,” Math. Comput. Simul., vol. 79, no. 7, pp. 2148–2156, 2009. DOI: 10.1016/j.matcom.2008.11.019.
  • D. L. Young, K. H. Chen, and C. W. Lee, “Novel meshless method for solving the potential problems with arbitrary domain,” J. Comput. Phys., vol. 209, no. 1, pp. 290–321, 2005. DOI: 10.1016/j.jcp.2005.03.007.
  • Z. J. Fu, W. Chen, and Y. Gu, “Burton-Miller-type singular boundary method for acoustic radiation and scattering,” J. Sound Vibr., vol. 333, no. 16, pp. 3776–3793, 2014. DOI: 10.1016/j.jsv.2014.04.025.
  • J. P. Li, W. Chen, Q. H. Qin, and Z. J. Fu, “A modified multilevel algorithm for large-scale scientific and engineering computing,” Comput. Math. Appl., vol. 77, no. 8, pp. 2061–2076, 2019. DOI: 10.1016/j.camwa.2018.12.012.
  • Z. J. Fu, W. Chen, P. H. Wen, and C. Z. Zhang, “Singular boundary method for wave propagation analysis in periodic structures,” J. Sound Vibr., vol. 425, pp. 170–188, 2018. DOI: 10.1016/j.jsv.2018.04.005.
  • J. Lin, C. Z. Zhang, L. L. Sun, and J. Lu, “Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method,” Adv. Appl. Math. Mech., vol. 10, no. 2, pp. 322–342, 2018. DOI: 10.4208/aamm.OA-2016-0187.
  • Z. C. Tang, Z. J. Fu, D. J. Zheng, and J. D. Huang, “Singular boundary method to simulate scattering of SH wave by the canyon topography,” Adv. Appl. Math. Mech., vol. 10, no. 4, pp. 912–924, 2018. DOI: 10.4208/aamm.OA-2017-0301.
  • L. Ling and T. Takeuchi, “Boundary control for inverse Cauchy problems of the Laplace equations,” Comput. Model. Eng. Sci., vol. 29, pp. 45–54, 2008.
  • L. Marin, “The method of fundamental solutions for inverse problems associated with the steady-state heat conduction in the presence of sources,” Comput. Model. Eng. Sci., vol. 30, pp. 99–122, 2008.
  • T. Wei, Y. C. Hon, and L. Ling, “Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators,” Eng. Anal. Bound. Elem., vol. 31, no. 4, pp. 373–385, 2007. DOI: 10.1016/j.enganabound.2006.07.010.
  • K. H. Chen, J. H. Kao, J. T. Chen, and K. L. Wu, “Desingularized meshless method for solving laplace equation with over-specified boundary conditions using regularization techniques,” Comput. Mech., vol. 43, no. 6, pp. 827–837, 2009. DOI: 10.1007/s00466-008-0348-1.
  • D. Y. Zhang, F. Ma, and E. Zheng, “A Herglotz wavefunction method for solving the inverse Cauchy problem connected with the Helmholtz equation,” J. Comput. Appl. Math., vol. 237, no. 1, pp. 215–222, 2013. DOI: 10.1016/j.cam.2012.07.026.
  • X. Wei and L. Sun, “Singular boundary method for 3D time-harmonic electromagnetic scattering problems,” Appl. Math. Model., vol. 76, pp. 617–631, 2019. DOI: 10.1016/j.apm.2019.06.039.
  • M. S. Zou, L. W. Jiang, and S. X. Liu, “A transformation of the CVIS method to eliminate the irregular frequency,” Eng. Anal. Bound. Elem., vol. 91, pp. 7–13, 2018.
  • W. W. Li, “A fast singular boundary method for 3D Helmholtz equation,” Comput. Math. Appl., vol. 77, no. 2, pp. 525–535, 2019. DOI: 10.1016/j.camwa.2018.09.055.
  • P. Patridge, C. Brebbia, and L. Wrobel, The Dual Reciprocity Boundary Element Method. London and New York: Elsevier Applied Science, 1992.
  • A. J. Nowak and P. W. Partridge, “Comparison of the dual reciprocity and the multiple reciprocity methods,” Eng. Anal. Bound. Elem., vol. 10, no. 2, pp. 155–160, 1992. DOI: 10.1016/0955-7997(92)90046-A.
  • Z. J. Fu, L. W. Yang, H. Q. Zhu, and W. Z. Xu, “A semi-analytical collocation trefftz scheme for solving multi-term time fractional diffusion-wave equations,” Eng. Anal. Bound. Elem., vol. 98, pp. 137–146, 2019. DOI: 10.1016/j.enganabound.2018.09.017.
  • Q. Xi, Z. J. Fu, and T. Rabczuk, “An efficient boundary collocation scheme for transient thermal analysis in large-size-ratio functionally graded materials under heat source load,” Comput. Mech., pp. 1–15, 2019. DOI: 10.1007/s00466-019-01701-7.
  • Z. J. Fu, W. Chen, and H. T. Yang, “Boundary particle method for Laplace transformed time fractional diffusion equations,” J. Comput. Phys., vol. 235, pp. 52–66, 2013. DOI: 10.1016/j.jcp.2012.10.018.
  • M. Itagaki, “Higher order three-dimensional fundamental solutions to the Helmholtz and the modified Helmholtz equations,” Eng. Anal. Bound. Elem., vol. 15, no. 3, pp. 289–293, 1995. DOI: 10.1016/0955-7997(95)00032-J.
  • P. C. Hansen, “Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms, vol. 6, no. 1, pp. 1–35, 1994. DOI: 10.1007/BF02149761.
  • P. C. Hansen, “The truncated svd as a method for regularization,” BIT, vol. 27, no. 4, pp. 534–553, 1987. DOI: 10.1007/BF01937276.
  • D. Lesnic, L. Elliott, and D. B. Ingham, “An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation,” Eng. Anal. Bound. Elem., vol. 20, no. 2, pp. 123–133, 1997. DOI: 10.1016/S0955-7997(97)00056-8.
  • L. Marin, “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems,” Eng. Anal. Bound. Elem., vol. 35, no. 3, pp. 415–429, 2011. DOI: 10.1016/j.enganabound.2010.07.011.
  • Z. J. Fu, Q. Xi, L. Ling, and C. Y. Cao, “Numerical investigation on the effect of tumor on the thermal behavior inside the skin tissue,” Int. J. Heat Mass Transfer, vol. 108, pp. 1154–1163, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.109.
  • Z. J. Fu, S. Reutskiy, H. G. Sun, J. Ma, and M. A. Khan, “A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains,” Appl. Math. Lett., vol. 94, pp. 105–111, 2019. DOI: 10.1016/j.aml.2019.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.