Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 4
183
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Precise time-domain expanding boundary element method for solving phase change problems

, , &
Pages 203-223 | Received 11 Jun 2019, Accepted 04 Sep 2019, Published online: 18 Sep 2019

References

  • R. Viskanta, “Heat transfer during melting and solidification of metals,” Trans. Asme J. Heat Transf., vol. 110, no. 4b, pp. 1205–1219, 1988. DOI: 10.1115/1.3250621.
  • D. Juric and G. Tryggvason, “A front-tracking method for dendritic solidification,” Comput. Phys., vol. 123, no. 1, pp. 127–148, 1996. DOI: 10.1006/jcph.1996.0011.
  • L. Tan and N. Zabaras, “A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods,” Comput. Phys., vol. 211, no. 1, pp. 36–63, 2006. DOI: 10.1016/j.jcp.2005.05.013.
  • A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable Sustainable Energy Rev., vol. 13, no. 2, pp. 318–345, 2009. DOI: 10.1016/j.rser.2007.10.005.
  • D. Zhou, C. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Appl. Energy, vol. 92, pp. 593–605, 2012. DOI: 10.1016/j.apenergy.2011.08.025.
  • H. Nazir et al., “Recent developments in phase change materials for energy storage applications: A review,” Int. J. Heat Mass Transf., vol. 129, pp. 491–523, 2019.
  • J. C. Jaeger and H. S. Carslaw, Conduction of Heat in Solids. Oxford: Clarendon Press, 1959.
  • J. Crank, Free and Moving Boundary Problems. Oxford: Clarendon Press, 1984.
  • K. A. Rathjen and L. M. Jiji, “Heat conduction with melting or freezing in a corner,” Trans. Asme J. Heat Transf., vol. 93, no. 1, pp. 101–109, 1971. DOI: 10.1115/1.3449740.
  • H. Budhia, F. Kreith, H. Budhia, and F. Kreith, “Heat transfer with melting or freezing in a wedge,” Int. J. Heat Mass Transfer, vol. 16, pp. 195–211, 1973. DOI: 10.1016/0017-9310(73)90262-7.
  • J. Yoo and B. Rubinsky, “Numerical computation using finite elements for the moving interface in heat transfer problems with phase transformation,” Numer. Heat Transf., vol. 6, no. 2, pp. 209–222, 1983. DOI: 10.1080/01495728308963083.
  • E. Feulvarch and J. Bergheau, “An implicit fixed-grid method for the finite-element analysis of heat transfer involving phase changes,” Numer. Heat Transfer Part B, vol. 51, no. 6, pp. 585–610, 2007. DOI: 10.1080/10407790601102217.
  • D. R. Atthey, “A finite difference scheme for melting problems,” IMA J. Appl. Math., vol. 13, no. 3, pp. 353–366, 1974. DOI: 10.1093/imamat/13.3.353.
  • M. Vynnycky and S. L. Mitchell, “On the numerical solution of a Stefan problem with finite extinction time,” J. Comput. Appl. Math., vol. 276, pp. 98–109, 2015. DOI: 10.1016/j.cam.2014.08.023.
  • A. Singh, I. V. Singh, and R. Prakash, “Meshless element free Galerkin method for unsteady nonlinear heat transfer problems,” Int. J. Heat Mass Transf., vol. 50, no. 5–6, pp. 1212–1219, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.039.
  • H. Yang and Y. He, “Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods,” Int. Commun. Heat Mass Transfer, vol. 37, no. 4, pp. 385–392, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.12.002.
  • D. Nardini and C. A. Brebbia, “A new approach to free vibration analysis using boundary elements,” Appl. Math. Modell., vol. 7, no. 3, pp. 157–162, 1983. DOI: 10.1016/0307-904X(83)90003-3.
  • S. Gümgüm and M. Tezer-Sezgin, “DRBEM solution of the natural convective flow of micropolar fluids,” Numer. Heat Transfer Part A, vol. 57, no. 10, pp. 777–798, 2010. DOI: 10.1080/10407781003800680.
  • N. Alsoy-Akgün and D. Lesnic, “A numerical solution for an inverse natural magneto-convection problem,” Numer. Heat Transfer Part B, vol. 63, no. 2, pp. 115–138, 2013. DOI: 10.1080/10407790.2013.740978.
  • M. A. Fahmy, “Transient magneto-thermo-elastic stresses in an anisotropic viscoelastic solid with and without a moving heat source,” Numer. Heat Transfer Part A, vol. 61, no. 8, pp. 633–650, 2012. DOI: 10.1080/10407782.2012.667322.
  • M. A. Fahmy, “A three-dimensional generalized magneto-thermo-viscoelastic problem of a rotating functionally graded anisotropic solids with and without energy dissipation,” Numer. Heat Transfer Part A, vol. 63, no. 9, pp. 713–733, 2013. DOI: 10.1080/10407782.2013.751317.
  • P. W. Partridge, and C. A. Brebbia, The Dual Reciprocity Boundary Element Method. Springer Science & Business Media, Southampton, UK: Computational Mechanics Publications, 2012.
  • X. Gao, “The radial integration method for evaluation of domain integrals with boundary-only discretization,” Eng. Anal. Boundary Elem., vol. 26, no. 10, pp. 905–916, 2002. DOI: 10.1016/S0955-7997(02)00039-5.
  • X. Gao, “A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems,” Trans. Asme J. Appl. Mech., vol. 69, no. 2, pp. 154–160, 2001. DOI: 10.1115/1.1433478.
  • X. Gao, “Evaluation of regular and singular domain integrals with boundary-only discretization – Theory and Fortran code,” J. Comput. Appl. Math., vol. 175, no. 2, pp. 265–290, 2005. DOI: 10.1016/j.cam.2004.05.012.
  • E. L. Albuquerque, P. Sollero, and W. P. de Paiva, “The BEM and the RIM in the dynamic analysis of symmetric laminate composite plates,” Braz. Soc. Mech. Sci. Eng., pp. 41–50, 2007.
  • X. Gao, C. Zhang, and L. Guo, “Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems,” Eng. Anal. Boundary Elem., vol. 31, no. 12, pp. 974–982, 2007. DOI: 10.1016/j.enganabound.2007.05.002.
  • C. Zhang et al., “3D crack analysis in functionally graded materials,” Eng. Fract. Mech., vol. 78, no. 3, pp. 585–604, 2011. DOI: 10.1016/j.engfracmech.2010.05.017.
  • H. Peng, M. Cui, and X. Gao, “A boundary element method without internal cells for solving viscous flow problems,” Eng. Anal. Boundary Elem., vol. 37, no. 2, pp. 293–300, 2013. DOI: 10.1016/j.enganabound.2012.09.014.
  • K. Yang and X. Gao, “Radial integration BEM for transient heat conduction problems,” Eng. Anal. Boundary Elem., vol. 34, no. 6, pp. 557–563, 2010. DOI: 10.1016/j.enganabound.2010.01.008.
  • K. Yang, X. Gao, and Y. Liu, “Using analytical expressions in radial integration BEM for variable coefficient heat conduction problems,” Eng. Anal. Boundary Elem., vol. 35, no. 10, pp. 1085–1089, 2011. DOI: 10.1016/j.enganabound.2011.04.003.
  • M. A. Al-Jawary and L. C. Wrobel, “Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients,” Eng. Anal. Boundary Elem., vol. 36, no. 5, pp. 685–695, 2012. DOI: 10.1016/j.enganabound.2011.11.019.
  • H. Yang, “A precise algorithm in the time domain to solve the problem of heat transfer,” Numer. Heat Transfer Part B, vol. 35, no. 2, pp. 243–249, 1999. DOI: 10.1080/104077999275974.
  • B. Yu, W. Yao, X. Gao, and Q. Gao, “A combined approach of RIBEM and precise time integration algorithm for solving transient heat conduction problems,” Numer. Heat Transfer Part B, vol. 65, no. 2, pp. 155–173, 2014. DOI: 10.1080/10407790.2013.846720.
  • B. Yu, W. Yao, and X. Gao, “A time-domain precise BEM for solving transient heat conduction problems with variable heat conductivities,” Boundary Elements Other Mesh Reduction Methods XXXVI, vol. 56, pp. 273, 2013.
  • B. Yu and W. Yao, “A precise time-domain expanding boundary-element method for solving three-dimensional transient heat conduction problems with variable thermal conductivity,” Numer. Heat Transfer Part B, vol. 66, no. 5, pp. 422–445, 2014. DOI: 10.1080/10407790.2014.922854.
  • J. Wang, H. Peng, K. Yang, Y. Yin, and X. Gao, “Radial integration boundary element method for heat conduction problems with convective heat transfer boundary,” Numer. Heat Transfer Part B, vol. 72, no. 4, pp. 300–310, 2017. DOI: 10.1080/10407790.2017.1394125.
  • B. Yu, W. Yao, H. Zhou, and H. Chen, “Precise time-domain expanding BEM for solving non-Fourier heat conduction problems,” Numer. Heat Transfer Part B, vol. 68, no. 6, pp. 511–532, 2015. DOI: 10.1080/10407790.2015.1068030.
  • R. P. Shaw, A boundary integral equation approach to the one dimensional ablation problem, in: Boundary element methods in engineering; Proceedings of the Fourth International Seminar, Southampton, England, September 21–23, 1982 (A84-30676 13-39). Springer-Verlag: Berlin, 1982, pp. 127–140.
  • L. C. Wrobel, “A boundary element solution to Stefan's problem,” in Boundary Elements V, Computational Mechanics Publications, Berlin: Southampton and Springer-Verlag, 1983, pp. 173.
  • C. J. Coleman, “A boundary integral formulation of the Stefan problem,” Appl. Math. Modell., vol. 10, no. 6, pp. 445–449, 1986. DOI: 10.1016/0307-904X(86)90024-7.
  • P. K. Banerjee and R. P. Shaw, “Boundary element formulation for melting and solidification problems,” in Developments Boundary Element Methods, vol. 2, London, UK: Applied Science Publishers, 1982, Chapter 1, pp. 1–18.
  • M. Tiba, “The boundary element method in two-phase Stefan problems,” Eng. Anal., vol. 4, no. 1, pp. 46–48, 1987. DOI: 10.1016/0264-682X(87)90032-3.
  • A. M. Sadegh, L. M. Jiji, and S. Weinbaum, “Boundary integral equation technique with application to freezing around a buried pipe,” Int. J. Heat Mass Transf., vol. 30, no. 2, pp. 223–232, 1987. DOI: 10.1016/0017-9310(87)90110-4.
  • T. V. Hromadka, II, and C. C. Yen, “Approximation of slow moving interface phase change problems using a generalized Fourier series and the CVBEM,” Eng. Anal., vol. 5, no. 2, pp. 95–99, 1988. DOI: 10.1016/0264-682X(88)90044-5.
  • M. Erhun and S. G. Advani, “A BEM approach to model heat flow during crystallization,” Int. J. Numer. Methods Eng., vol. 35, no. 2, pp. 351–368, 1992. DOI: 10.1002/nme.1620350208.
  • K. O'Neill, “Boundary integral equation solution of moving boundary phase change problems,” Int. J. Numer. Methods Eng., vol. 19, pp. 1825–1850, 1983. DOI: 10.1002/nme.1620191208.
  • N. Zabaras and S. Mukherjee, “An analysis of solidification problems by the boundary element method,” Int. J. Numer. Methods Eng., vol. 24, no. 10, pp. 1879–1900, 1987. DOI: 10.1002/nme.1620241006.
  • N. Zabaras and S. Mukherjee, “Solidification problems by the boundary element method,” int. j. Solids Structures, vol. 31, no. 12-13, pp. 1829–1846, 1994. DOI: 10.1016/0020-7683(94)90218-6.
  • W. DeLima-Silva, Jr, and L. C. Wrobel, “A boundary element formulation for multi-dimensional ablation problems,” in Boundary Elements XIV, vol. 1: Field Problems and Applications, Computational Mechanics Publications, London: Southampton and Elsevier, 1992, pp. 1.
  • W. DeLima-Silva, Jr, and L. C. Wrobel, “A front-tracking BEM formulation for one-phase solidification/melting problems,” Eng. Anal. Boundary Elem., vol. 16, no. 2, pp. 171–182, 1995. DOI: 10.1016/0955-7997(95)00053-4.
  • W. Lu, Y. Zeng, and J. Liu, “Extension of the dual reciprocity boundary element method to the problems of phase-change and thermal wave propagation,” WIT Trans. Modell. Simul., vol. 21, pp. 649–658, 1998.
  • B. Šarler and G. Kuhn, “Dual reciprocity boundary element method for convective-diffusive solid-liquid phase change problems, Part 1. Formulation,” Eng. Anal. Boundary Elem., vol. 21, no. 1, pp. 53–63, 1998. DOI: 10.1016/S0955-7997(97)00112-4.
  • B. Šarler and G. Kuhnb, “Dual reciprocity boundary element method for convective-diffusive solid-liquid phase change problems, Part 2. Numerical examples,” Eng. Anal. Boundary Elem., vol. 21, no. 1, pp. 65–79, 1998. DOI: 10.1016/S0955-7997(97)00113-6.
  • J. C. Jo, W. K. Shin, and C. Y. Choi, “Multidimensional phase change problems by the dual-reciprocity boundary-element method,” Numer. Heat Transfer Part B, vol. 36, pp. 95–113, 1999.
  • W. Lu, W. Guo, and C. Ma, “Simulation of two-dimensional multiple-phase-change moving-boundary problems by the dual-reciprocity boundary-element method,” Numer. Heat Transfer Part B, vol. 43, no. 1, pp. 63–85, 2003. DOI: 10.1080/713836152.
  • B. Yu, W. Yao, X. Gao, and S. Zhang, “Radial integration BEM for one-phase solidification problems,” Eng. Anal. Boundary Elem., vol. 39, pp. 36–43, 2014. DOI: 10.1016/j.enganabound.2013.10.018.
  • C. A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course. Southampton, UK: WIT press, 1994.
  • X. Gao and T. G. Davies, Boundary Element Programming in Mechanics. Cambridge, UK: Cambridge University Press, 2002.
  • S. R. Karur and P. A. Ramachandran, “Augmented thin plate spline approximation in DRM,” Boundary Elem. Commun., vol. 6, pp. 55–58, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.