Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
223
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A high-order finite volume scheme for unsteady convection-dominated convection–diffusion equations

Pages 253-272 | Received 03 Jun 2019, Accepted 04 Sep 2019, Published online: 20 Sep 2019

References

  • J. C. Wu, L. T. Fan, and L. E. Erickson, “Three-point backward finite-difference method for solving a system of mixed hyperbolic-parabolic partial differential equations,” Comp. Chem. Eng., vol. 14, no. 6, pp. 679, 1990. DOI: 10.1016/0098-1354(90)87036-O.
  • W. Q. Tao et al., “Some recent advances in finite volume approach and their applications in the study of heat transfer enhancement,” Int. J. Therm. Sci., vol. 44, no. 7, pp. 623–643, 2005. DOI: 10.1016/j.ijthermalsci.2005.02.007.
  • H. K. Versteeg, and W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, 2nd ed. London: Prentice Hall, 2007.
  • P. Tamamidis, and D. N. Assanis, “Evaluation of various high-order-accuracy schemes with and without flux limiters,” Int. J. Numer. Methods Fluids, vol. 16, no. 10, pp. 931–948, 1993. DOI: 10.1002/fld.1650161006.
  • Z. J. Chen et al., “A meshless local Petrov-Galerkin approach for solving the convection-dominated problems based on the streamline upwind idea and the variational multiscale concept,” Numer. Heat Transfer B Fundam., vol. 73, no. 1, pp. 19–32, 2018. DOI: 10.1080/10407790.2017.1420320.
  • Z. J. Chen, Z. Y. Li, and W. Q. Tao, “A new stability parameter in streamline upwind meshless Petrov-Galerkin method for convection-diffusion problems at large Peclet number,” Numer. Heat Transfer B Fundam., vol. 74, no. 5, pp. 746–764, 2018. DOI: 10.1080/10407790.2019.1580050.
  • W. You, Z. Y. Li, and W. Q. Tao, “A physically consistent FVM interpolation scheme based on the discretized convection-diffusion equation,” Numer. Heat Transfer B Fundam., vol. 71, no. 5, pp. 443–455, 2017. DOI: 10.1080/10407790.2017.1309174.
  • A. Harten, “High resolution schemes for hyperbolic conservation laws,” Comput. Phys., vol. 49, no. 3, pp. 357–393, 1983. DOI: 10.1016/0021-9991(83)90136-5.
  • P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 21, no. 5, pp. 995–1011, 1984. DOI: 10.1137/0721062.
  • P. L. Roe, “Characteristic-based schemes for the Euler equations,” Annu. Rev. Fluid Mech., vol. 18, no. 1, pp. 337–365, 1986. DOI: 10.1146/annurev.fluid.18.1.337.
  • B. van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme,” Comput. Phys., vol. 14, no. 4, pp. 361–370, 1974. DOI: 10.1016/0021-9991(74)90019-9.
  • D. Zhang et al., “A review on TVD schemes and a refined flux-limiter for steady-state calculations,” Comput. Phys., vol. 302, pp. 114–154, 2015. DOI: 10.1016/j.jcp.2015.08.042.
  • S. Osher, and E. Tadmor, “On the convergence of difference approximations to scalar conservation laws,” Math. Comput., vol. 50, no. 181, pp. 19–51, 1988. DOI: 10.2307/2007913.
  • A. Harten et al., “Uniformly high order accurate essentially non-oscillatory schemes III,” J. Comput. Phys., vol. 71, no. 2, pp. 231–303, 1987. DOI: 10.1016/0021-9991(87)90031-3.
  • A. Harten, and S. Osher, “Uniformly high-order accurate nonoscillatory schemes I,” SIAM J. Numer. Anal., vol. 24, no. 2, pp. 279–309, 1987. DOI: 10.1137/0724022.
  • C. W. Shu, and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys., vol. 77, no. 2, pp. 439–471, 1988. DOI: 10.1016/0021-9991(88)90177-5.
  • C. W. Shu, and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes II,” J. Comput. Phys., vol. 83, no. 1, pp. 32–78, 1989. DOI: 10.1016/0021-9991(89)90222-2.
  • X. D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” J. Comput. Phys., vol. 115, no. 1, pp. 200–212, 1994. DOI: 10.1006/jcph.1994.1187.
  • G. S. Jiang, and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys., vol. 126, no. 1, pp. 202–228, 1996. DOI: 10.1006/jcph.1996.0130.
  • D. S. Balsara, and C.-W. Shu, “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy,” J. Comput. Phys., vol. 160, no. 2, pp. 405–452, 2000. DOI: 10.1006/jcph.2000.6443.
  • J. Qiu, and C. W. Shu, “Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: One-dimensional case,” J. Comput. Phys., vol. 193, no. 1, pp. 115–135, 2004. DOI: 10.1016/j.jcp.2003.07.026.
  • A. K. Henrick, T. D. Aslam, and J. M. Powers, “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points,” Comput. Phys., vol. 207, no. 2, pp. 542–567, 2005. DOI: 10.1016/j.jcp.2005.01.023.
  • H. Liu, and J. Qiu, “Finite difference Hermite WENO schemes for hyperbolic conservation laws,” J. Sci. Comput., vol. 63, no. 2, pp. 548–572, 2015. DOI: 10.1007/s10915-014-9905-2.
  • H. Liu, and J. Qiu, “Finite difference Hermite WENO schemes for conservation laws, II: An alternative approach,” J. Sci. Comput., vol. 66, no. 2, pp. 598–624, 2016. DOI: 10.1007/s10915-015-0041-4.
  • Z. Ma, and S. P. Wu, “HWENO schemes based on compact difference for hyperbolic conservation laws,” J. Sci. Comput., vol. 76, no. 2, pp. 1301–1325, 2018. DOI: 10.1007/s10915-018-0663-4.
  • M. Augustin et al., “An assessment of discretizations for convection-dominated convection-diffusion equations,” Comput. Methods Appl. Mech. Eng., vol. 200, no. 47-48, pp. 3395–3409, 2011., DOI: 10.1016/j.cma.2011.08.012.
  • D. Pan, “A high-order finite volume method for solving one-dimensional convection and diffusion equations,” Numer. Heat Transfer B Fundam., vol. 71, no. 6, pp. 533–548, 2017. DOI: 10.1080/10407790.2017.1326769.
  • C. Liu, H. Fu, and P. Lu, “New shock detector and improved control function for shock-boundary layer interaction,” Int. J. Numer. Anal. Model., vol. 9, no. 2, pp. 276–288, 2012.
  • J. Skála et al., “The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers,” Astron. Astrophys., vol. 580, pp. A48, 2015., DOI: 10.1051/0004-6361/201425274.
  • M. Xu, “A type of high order schemes for steady convection-diffusion problems,” Int. J. Heat Mass Transfer, vol. 107, pp. 1044–1053, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.128.
  • M. Xu, “A modified finite volume method for convection-diffusion-reaction problems,” Int. J. Heat Mass Transfer, vol. 117, pp. 658–668, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.003.
  • M. Xu, “A high order scheme for unsteady heat conduction equations,” Appl. Math. Comput., vol. 348, pp. 565–574, 2019. DOI: 10.1016/j.amc.2018.12.024.
  • Y. Cheng, and C. W. Shu, “Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equation,” Comput. Struct., vol. 87, no. 11–12, pp. 630–641, 2009. DOI: 10.1016/j.compstruc.2008.11.012.
  • J. Zhu, and J. Qiu, “Local DG method using WENO type limiters for convection-diffusion problems,” Comput. Phys., vol. 230, no. 11, pp. 4353–4375, 2011. DOI: 10.1016/j.jcp.2010.03.023.
  • I. A. Ganaie, and V. K. Kukreja, “Numerical solution of Burgers’ equation by cubic Hermite collocation method,” Appl. Math. Comput., vol. 237, pp. 571–581, 2014. DOI: 10.1016/j.amc.2014.03.102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.