Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
229
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mass flow rate prediction of shale gas considering gas diffusion and water film evaporation

, , , &
Pages 285-310 | Received 25 Jun 2019, Accepted 04 Sep 2019, Published online: 20 Sep 2019

References

  • S. Hai, J. Yao, D. Y. Fan, C. C. Wang, and Z. X. Sun, “Gas transport mode criteria in ultra-tight porous media,” Int. J. Heat Mass Transfer, vol. 83, pp. 192–199, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.075.
  • F. Javadpour, “Nanopores and apparent permeability of gas flow in mudrocks,” J. Can. Petrol. Technol., vol. 48, no. 8, pp. 16–21, 2009. DOI: 10.2118/09-08-16-DA.
  • N. Shah, P. Dhar, S. K. Chinige, M. Geier, and A. Pattamatta, “Cascaded collision lattice Boltzmann model (CLBM) for simulating fluid and heat transport in porous media,” Numerical Heat Transfer, Part B: Fundamentals, vol. 72, no. 3, pp. 211–232, 2017. DOI: 10.1080/10407790.2017.1377530.
  • F. Amin and A. Malek, “Spectral Fourier–Galerkin benchmark solution for natural convection in an inclined saturated porous medium,” Numerical Heat Transfer, Part B: Fundamentals, vol. 71, no. 4, pp. 372–395, 2017. DOI: 10.1080/10407790.2016.1265300.
  • M. J. S. de Lemos and E. J. Braga, “Use of porous-continuum and continuum models for determining the permeability of porous cavities under turbulent free convection,” Numerical Heat Transfer, Part B: Fundamentals, vol. 73, no. 2, pp. 78–93, 2018. DOI: 10.1080/10407790.2017.1420328.
  • R. J. Ambrose, R. C. Hartman, M. Diaz Campos, I. Y. Akkutlu, and C. Sondergeld, “New pore-scale considerations for shale gas in place calculations,” SPE Unconventional Gas Conf. Soc. Petrol. Eng., vol. 17, no. 1, pp. 219–229, 2010. DOI: 10.2118/131772-PA.
  • Q. R. Passey, K. Bohacs, W. L. Esch, R. Klimentidis, and S. Sinha, “From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs,” Int. Oil Gas Conf. Exhibition China, Soc. Petrol. Eng., 2010. DOI: 10.2118/131350-MS.
  • V. Swami and A. Settari, A pore scale gas flow model for shale gas reservoir, SPE Americas Unconventional Resources Conference, Society of Petroleum Engineers, DOI: 10.2118/155756-MS.
  • J. Liu, J. Wang, F. Gao, Y. Ju, and F. Tang, “Impact of micro-and macro-scale consistent flows on well performance in fractured shale gas reservoirs,” J. Nat. Gas Sci. Eng., vol. 36, pp. 1239–1252, 2016. DOI: 10.1016/j.jngse.2016.05.005.
  • H. Song et al., “Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media,” Int. J. Heat Mass Transf., vol. 80, pp. 626–635, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.039.
  • W. Song, J. Yao, J. Ma, G. Couples, and Y. Li, “Assessing relative contributions of transport mechanisms and real gas properties to gas flow in nanoscale organic pores in shales by pore network modelling,” Int. J. Heat Mass Transf., vol. 113, pp. 524–537, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.109.
  • J. Li, X. Li, K. Wu, D. Feng, T. Zhang, and Y. Zhang, “Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay,” Int. J. Coal Geol., vol. 179, pp. 253–268, 2017. DOI: 10.1016/j.coal.2017.06.008.
  • J.-P. Korb, B. Nicot, A. Louis-Joseph, S. Bubici, and G. Ferrante, “Dynamics and wettability of oil and water in oil shales,” J. Phys. Chem. C, vol. 118, no. 40, pp. 23212–23218, 2014. DOI: 10.1021/jp508659e.
  • E. Zuluaga, N. Muñoz, and G. Obando, An experimental study to evaluate water vaporisation and formation damage caused by dry gas flow through porous media, International Symposium on Oilfield Scale, Society of Petroleum Engineers, 2001. DOI: 10.2118/68335-MS.
  • C. L. Cipolla, E. Lolon, and M. J. Mayerhofer, Reservoir modeling and production evaluation in shale-gas reservoirs, International petroleum technology conference, International Petroleum Technology Conference, 2009. DOI: 10.2523/IPTC-13185-MS.
  • W. Song et al., “Apparent gas permeability in an organic-rich shale reservoir,” Fuel, vol. 181, pp. 973–984, 2016. DOI: 10.1016/j.fuel.2016.05.011.
  • J. Shi et al., “Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting, SPE Unconventional Resources Conference Canada,” Soc. Petrol. Eng., 2013. DOI: 10.2118/167226-MS.
  • K. Wu, X. Li, C. Guo, C. Wang, and Z. Chen, “A unified model for gas transfer in nanopores of shale-gas reservoirs: Coupling pore diffusion and surface diffusion,” Spe J., vol. 21, no. 5, pp. 1583, 583–581, 611, 2016. DOI: 10.2118/2014-1921039-PA.
  • J. Li et al., “Water distribution characteristic and effect on methane adsorption capacity in shale clay,” Int. J. Coal Geol., vol. 159, pp. 135–154, 2016. DOI: 10.1016/j.coal.2016.03.012.
  • Z. Sun, X. Li, J. Shi, T. Zhang, and F. Sun, “Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic,” Int. J. Heat Mass Transf., vol. 115, pp. 1008–1019, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.123.
  • A. Zolfaghari, H. Dehghanpour, and M. Xu, “Water sorption behaviour of gas shales: II. Pore size distribution,” Int. J. Coal Geol., vol. 179, pp. 187–195, 2017. DOI: 10.1016/j.coal.2017.05.009.
  • A. Jarrahian and E. Heidaryan, “A simple correlation to estimate natural gas viscosity,” J. Nat. Gas Sci. Eng., vol. 20, pp. 50–57, 2014. DOI: 10.1016/j.jngse.2014.06.004.
  • I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. Solids,” J. Am. Chem. Soc., vol. 38, no. 11, pp. 2221–2295, 1916. DOI: 10.1021/ja02268a002.
  • Z. Li, L. Ming, and Z. Yaping, “Adsorption measurement and its theorical analysis of supercritical methane on activated carbon with high surface area,” Sci. China (Series B), vol. 30, no. 1, pp. 49–56, 2000.
  • V. Shabro, C. Torres-Verdin, and F. Javadpour, Numerical simulation of shale-gas production: From pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption to reservoir modeling of compressible fluid, North American Unconventional Gas Conference and Exhibition, Society of Petroleum Engineers, 2011. DOI: 10.2118/144355-MS.
  • K. Wu, X. Li, C. Wang, W. Yu, and Z. Chen, “Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs,” Ind. Eng. Chem. Res., vol. 54, no. 12, pp. 3225–3236, 2015. DOI: 10.1021/ie504030v.
  • L. Guo, X. Peng, and Z. Wu, “Dynamical characteristics of methane adsorption on monolith nanometer activated carbon,” J. Chem. Ind. Eng. (China), vol. 59, no. 11, pp. 2726–2732, 2008. DOI: 10.1007/s11670-008-0115-z.
  • Y. Chen and R. Yang, “Concentration dependence of surface diffusion and zeolitic diffusion,” AIChE J., vol. 37, no. 10, pp. 1579–1582, 1991. DOI: 10.1002/aic.690371015.
  • F. Javadpour, D. Fisher, and M. Unsworth, “Nanoscale gas flow in shale gas sediments,” J. Can. Petrol. Technol., vol. 46, no. 10, pp. 56–61, 2007. DOI: 10.2118/07-10-06.
  • H. Sui, Molecular Simulation of Adsorption Behavior of Shale Gas in Clay. China: Southwest Petroleum University, 2016.
  • W. Loebenstein, “Calculations and comparisons of nonideal gas corrections for use in gas adsorption,” J. Colloid Interface Sci., vol. 36, no. 3, pp. 397–400, 1971. DOI: 10.1016/0021-9797(71)90011-7.
  • L. Pan et al., “A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, Eastern China,” Int. J. Coal Geol., vol. 146, pp. 68–78, 2015. DOI: 10.1016/j.coal.2015.05.005.
  • X. Liu, Shale Petrological Characteristics and Its Influence on the Amount of Adsorbed Gas. China: Southwest Petroleum University, 2015.
  • L. I. Bo Wen et al., “The influence factor of adsorbed gas of marine and transitional facies shale and the difference of influence factor,” Sci. Technol. Eng. (China), vol. 17, pp. 44–51, 2017.
  • F. Yang, Z. Ning, R. Zhang, H. Zhao, and B. M. Krooss, “Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China,” Int. J. Coal Geol., vol. 146, pp. 104–117, 2015. DOI: 10.1016/j.coal.2015.05.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.