Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 4
95
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Global, nonparametric, noniterative optimization of time-averaged quantities under small, time-varying forcing: An application to a thermal convection field

ORCID Icon, , , &
Pages 185-202 | Received 10 Jun 2019, Accepted 04 Sep 2019, Published online: 17 Sep 2019

References

  • J. C. Hermanson, M. G. Mungal, and P. E. Dimotakis, “Heat release effects on shear-layer growth and entrainment,” AIAA J., vol. 25, no. 4, pp. 578–583, 1987. DOI: 10.2514/3.9666.
  • A. K. Charakopoulos, T. E. Karakasidis, P. N. Papanicolaou, and A. Liakopoulos, “Nonlinear time series analysis and clustering for jet axis identification in vertical turbulent heated jets,” Phys. Rev. E, vol. 89, no. 3, pp. 032913, 2014. DOI: 10.1103/PhysRevE.89.032913.
  • H. Sakashita, “Temperature measurements near the heating surface at high heat fluxes in pool boiling of 2-propanol/water mixtures,” Int. J. Heat Mass Transfer, vol. 93, pp. 1000–1007, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.042.
  • P. Bräunlich, J. Gasiot, J. P. Fillard, and M. Castagne, “Laser heating of thermoluminescent dielectric layers,” Appl. Phys. Lett., vol. 39, no. 9, pp. 769–771, 1981. DOI: 10.1063/1.92848.
  • M. R. Mross, and J. E. Walsh, “Turbulent heating in a moderate energy electron beam plasma experiment,” Phys. Fluids, vol. 19, no. 8, pp. 1217–1222, 1976. DOI: 10.1063/1.861604.
  • T. S. Team et al., “New tokamak plasma regime with stationary temperature oscillations,” Phys. Rev. Lett., vol. 91, pp. 135001, 2003. DOI: 10.1103/PhysRevLett.91.135001.
  • S. R. Tieszen, T. J. O’hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1-m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame, vol. 139, no. 1–2, pp. 126–141, 2004. DOI: 10.1016/j.combustflame.2004.08.006.
  • P. M. Ligrani, J. L. Harrison, G. I. Mahmmod, and M. L. Hill, “Flow structure due to dimple depressions on a channel surface,” Phys. Fluids, vol. 13, no. 11, pp. 3442–3451, 2001. DOI: 10.1063/1.1404139.
  • J. Friedrich, Y. S. Lee, B. Fischer, C. Kupfer, D. Vizman, and G. Müller, “Experimental and numerical study of Rayleigh-Bénard convection affected by a rotating magnetic field,” Phys. Fluids, vol. 11, no. 4, pp. 853–861, 1999. DOI: 10.1063/1.869957.
  • M. Shapiro, and H. Brenner, “Taylor dispersion in the presence of time-periodic convection phenomena. Part II. Transport of transversely oscillating Brownian particles in a plane Poiseuille flow,” Phys. Fluids A, vol. 2, no. 10, pp. 1744–1753, 1990. DOI: 10.1063/1.857701.
  • M. B. Chiekh, M. Ferchichi, J. C. Béra, and M. Michard, “Minimization of time-averaged and unsteady aerodynamic forces on a thick flat plate using synthetic jets,” J. Fluids Struct., vol. 54, pp. 522–535, 2015. DOI: 10.1016/j.jfluidstructs.2014.12.007.
  • Z. Wang, and I. Gursul, “Lift enhancement of a flat-plate airfoil by steady suction,” AIAA J., vol. 55, no. 4, pp. 1–18, 2017.
  • A. P. Baskakov et al., “Heat transfer to objects immersed in fluidized beds,” Powder Tech., vol. 8, no. 5/6, pp. 273–282, 1973. DOI: 10.1016/0032-5910(73)80092-0.
  • L. R. Glicksman, and A. W. Hunt, Jr, “Numerical simulation of dropwise condensation,” Int. J. Heat Mass Transfer, vol. 15, no. 11, pp. 2251–2269, 1972. DOI: 10.1016/0017-9310(72)90046-4.
  • T. Khan, and R. Turton, “The measurement of instantaneous heat transfer coefficients around the circumference of a tube immersed in a high temperature fluidized bed,” Int. J. Heat Mass Transfer, vol. 35, no. 12, pp. 3397–3406, 1992. DOI: 10.1016/0017-9310(92)90226-I.
  • A. Velazquez, J. Arias, and B. Mendez, “Laminar heat transfer enhancement downstream of a backward facing step by using a pulsating flow,” Int. J. Heat Mass Transfer, vol. 51, no. 7–8, pp. 2075–2089, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.06.009.
  • M. Pourgholam, E. Izadpanah, R. Motamedi, and S. E. Habibi, “Convective heat transfer enhancement in a parallel plate channel by means of rotating or oscillating blade in the angular direction,” Appl. Thermal Eng., vol. 78, pp. 248–257, 2015. DOI: 10.1016/j.applthermaleng.2014.12.057.
  • Z. Cheng, C. Juli, N. B. Wood, R. G. J. Gibbs, and X. Y. Xu, “Predicting flow in aortic dissection: Comparison of computational model with PC-MRI velocity measurements,” Med. Eng. Phys., vol. 36, no. 9, pp. 1176–1184, 2014. DOI: 10.1016/j.medengphy.2014.07.006.
  • E. Kidher, Z. Cheng, O. A. Jarral, D. P. O. Regan, X. Y. Xu, and T. Athanasiou, “In-vivo assessment of the morphology and hemodynamic functions of the BioValsalva composite valve-conduit graft using cardiac magnetic resonance imaging and computational modelling technology,” J. Card. Surg., vol. 9, pp. 193, 2014.
  • M. A. Stevens, “Width of straight alluvial channels,” J. Hydr. Eng., vol. 115, no. 3, pp. 309–326, 1989. DOI: 10.1061/(ASCE)0733-9429(1989)115:3(309).
  • L. Kolsi, K. Kalidasan, A. Alghamdi, M. N. Borjini, and P. R. Kanna, “Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide–water nanofluid,” Numer. Heat Transfer A, vol. 70, no. 3, pp. 242–259, 2016. DOI: 10.1080/10407782.2016.1173478.
  • W. Zhang, H. Yang, H. S. Dou, and Z. Zhu, “Forced convection of flow past two tandem rectangular cylinders in a channel,” Numer. Heat Transfer A, vol. 72, no. 1, pp. 89–106, 2017. DOI: 10.1080/10407782.2017.1353384.
  • A. Abdelmoula, B. A. Younis, S. Spring, and B. Weigand, “Large-eddy simulations of heated flows in ribbed channels with spanwise rotation,” Numer. Heat Transfer A, vol. 74, no. 1, pp. 895–916, 2018. DOI: 10.1080/10407782.2018.1513282.
  • W. Wang, Y. Zhang, J. Liu, B. Li, and B. Sundén, “Large eddy simulation of turbulent flow and heat transfer in outward transverse and helically corrugated tubes,” Numer. Heat Transfer A, vol. 75, no. 7, pp. 456–468, 2019. DOI: 10.1080/10407782.2019.1608763.
  • C. Yundong, L. Xiaoming, W. Erzhi, J. Li, and W. Guang, “Electric field optimization design of the vacuum interrupter based on the Tabu search algorithm,” IEEE Trans. Dielect. Elect. Insulation, vol. 9, no. 2, pp. 169–172, 2002.
  • J. L. Paulsen, J. Franck, V. Demas, and L. S. Bouchard, “Least squares magnetic-field optimization for portable nuclear magnetic resonance magnet design,” IEEE Trans. Magnetics, vol. 44, no. 12, pp. 4582–4590, 2008. DOI: 10.1109/TMAG.2008.2001697.
  • Y. Liu, Q. Chen, K. Hu, and J. H. Hao, “Flow field optimization for the solar parabolic trough receivers in direct steam generation systems by the variational principle,” Int. J. Heat Mass Transfer, vol. 102, pp. 1073–1081, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.083.
  • D. N. Srinath, and S. Mittal, “Optimal aerodynamic design of airfoils in unsteady viscous flows,” Comput. Meth. Appl. Mech. Eng., vol. 199, no. 29–32, pp. 1976–1991, 2010. DOI: 10.1016/j.cma.2010.02.016.
  • C. Y. Ho, and C. Y. Huang, “Non-cooperative multi-cell resource allocation and modulation adaptation for maximizing energy efficiency in uplink OFDMA cellular networks,” IEEE Wireless Commun. Lett., vol. 1, no. 5, pp. 420–423, 2012. DOI: 10.1109/WCL.2012.061212.120239.
  • A. Beloglazov, and R. Buyya, “Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints,” IEEE Trans. Parallel Distributed Syst., vol. 24, no. 7, pp. 1366–1379, 2013. DOI: 10.1109/TPDS.2012.240.
  • P. Venini, and M. Pingaro, “A new approach to optimization of viscoelastic beams: Minimization of the input/output transfer function H∞-norm,” Struct. Multidisc. Optim., vol. 55, no. 5, pp. 1559–1573, 2017. DOI: 10.1007/s00158-016-1600-5.
  • M. Hadi, and M. R. Pakravan, “Rate-maximized scheduling in adaptive OCDMA systems using stochastic optimization,” IEEE Commun. Lett., vol. 22, no. 4, pp. 728, 2018. DOI: 10.1109/LCOMM.2018.2793865.
  • L. Fang, and X. Li, “Design optimization of unsteady airfoils with continuous adjoint method,” Appl. Math. Mech. Engl. Ed., vol. 36, no. 10, pp. 1329–1336, 2015. DOI: 10.1007/s10483-015-2010-9.
  • I. Grigorenko, M. E. Garcia, and K. H. Bennemann, “Theory for the optimal control of time-averaged quantities in quantum systems,” Phys. Rev. Lett., vol. 89, no. 23, pp. 233003, 2002. DOI: 10.1103/PhysRevLett.89.233003.
  • P. A. Nelson, J. K. Hammond, P. Joseph, and S. J. Elliott, “Active control of stationary random sound fields,” J. Acoust. Soc. Am., vol. 87, no. 3, pp. 963–975, 1990. DOI: 10.1121/1.399432.
  • X. Chen, and J. G. Muga, “Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator,” Phys. Rev. A, vol. 82, no. 5, pp. 053403, 2010. DOI: 10.1103/PhysRevA.82.053403.
  • H. Ishida, K. Yamamoto, S. Nishihara, T. Oki, and G. Kawahara, “Forced oscillations, optimal forcing and resonance of thermal convection under small, time-varying forcing,” Int. J. Heat Mass Transfer, vol. 55, no. 23–24, pp. 6618–6631, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.071.
  • H. Ishida, S. Sugimura, T. Kuroda, and G. Kawahara, “Second-order approximation to forced oscillations of thermal convection under small time-varying forcing,” Int. J. Heat Mass Transfer, vol. 96, pp. 145–153, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.033.
  • G. Z. Gershuni, and D. V. Lyubimov, Thermal Vibrational Convection. Chichester, UK: John Wiley & Sons Ltd, 1998.
  • G. Z. Gershuni, and Y. M. Zhukhovitskiy, “Vibration-induced thermal convection in weightlessness,” Fluid Mech. Sov. Res., vol. 15, pp. 63–84, 1986.
  • W. S. Fu, and W. J. Shieh, “A study of thermal convection in an enclosure induced simultaneously by gravity and vibration,” Int. J. Heat Mass Transfer, vol. 35, pp. 1695–1710, 1992.
  • H. Ishida, and H. Kimoto, “Vibration effects on the average heat transfer characteristics of the natural convection field in a square enclosure,” Heat Trans. Asian Res., vol. 29, no. 7, pp. 545–558, 2000. DOI: 10.1002/1523-1496(200011)29:7<545::AID-HTJ2>3.0.CO;2-4.
  • G. B. Kim, J. M. Hyun, and H. Sang Kwak, “Enclosed buoyant convection of a variable-viscosity fluid under time-periodic thermal forcing,” Numer. Heat Transfer A, vol. 43, no. 2, pp. 137–154, 2003. DOI: 10.1080/10407780307327.
  • S. K. Kim, S. Y. Kim, and Y. D. Choi, “Amplification of boundary layer instability by hot wall thermal oscillation in a side heated cavity,” Phys. Fluids, vol. 17, no. 1, pp. 014103, 2005. DOI: 10.1063/1.1828122.
  • E. V. Kalabin, M. V. Kanashina, and P. T. Zubkov, “Heat transfer from the cold wall of a square cavity to the hot one by oscillatory natural convection,” Numer. Heat Transfer A, vol. 47, no. 6, pp. 609–619, 2005. DOI: 10.1080/10407780590911567.
  • E. V. Kalabin, M. V. Kanashina, and P. T. Zubkov, “Natural-convective heat transfer in a square cavity with time-varying side-wall temperature,” Numer. Heat Transfer A, vol. 47, no. 6, pp. 621–631, 2005. DOI: 10.1080/10407780590896853.
  • C. S. Yih, “Gravity waves in a stratified fluid,” J. Fluid Mech., vol. 8, no. 4, pp. 481–508, 1960. DOI: 10.1017/S002211206000075X.
  • S. A. Thorpe, “On standing internal gravity waves of finite amplitude,” J. Fluid Mech., vol. 32, no. 3, pp. 489–528, 1968. DOI: 10.1017/S002211206800087X.
  • S. Paolucci, and D. R. Chenoweth, “Transition to chaos in a differentially heated vertical cavity,” J. Fluid Mech., vol. 201, no. 1, pp. 379–410, 1989. DOI: 10.1017/S0022112089000984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.