Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 2
406
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 1: Basic algorithm

, &
Pages 87-115 | Received 08 Jul 2019, Accepted 04 Nov 2019, Published online: 26 Nov 2019

References

  • J. Yang and X. L. Huang, “Nonlinear transient response of functionally graded plates with general imperfections in thermal environments,” Comput. Methods. Appl. Mech. Eng., vol. 196, no. 25–28, pp. 2619–2630, 2007. DOI: 10.1016/j.cma.2007.01.012.
  • A. Korzen and D. Taler, “Modeling of transient response of a plate fin and tube heat exchanger,” Int. J. Therm. Sci, vol. 92, pp. 188–198, 2015. DOI: 10.1016/j.ijthermalsci.2015.01.036.
  • A. Riccio et al., “Optimum design of ablative thermal protection systems for atmospheric entry vehicles,” Appl. Therm. Eng., vol. 119, pp. 541–552, 2017. DOI: 10.1016/j.applthermaleng.2017.03.053.
  • W. L. Dai and P. R. Woodward, “Numerical simulations for nonlinear heat transfer in a system of multimaterials,” J. Comput. Phys., vol. 139, no. 1, pp. 58–78, 1998. DOI: 10.1006/jcph.1997.5863.
  • T.-M. Shih, C.-H. Sung, and B. Yang, “A numerical method for solving nonlinear heat transfer equations,” Numer. Heat Transf., Part B, vol. 54, no. 4, pp. 338–353, 2008. DOI: 10.1080/10407790802182687.
  • J. Kujawski, “Analysis of the collocation time finite element method for the nonlinear heat transfer equation,” Commun. Appl. Numer. Methods, vol. 3, no. 2, pp. 103–107, 1987. DOI: 10.1002/cnm.1630030205.
  • E. Li et al., “Smoothed finite element method with exact solutions in heat transfer problems,” Int. J. Heat Mass Transf., vol. 78, pp. 1219–1231, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.078.
  • R. V. Mohan and K. K. Tamma, “Finite-element finite-volume approaches with adaptive time-stepping strategies for transient thermal problems,” Sadhana-Acad. Proc. Eng. Sci., vol. 19, pp. 765–783, 1994. DOI: 10.1007/BF02744404.
  • M. Copur and M. N. Eruslu, “Finite volume modeling of the solidification of an axial steel cast impeller,” Metalurgija, vol. 53, no. 2, pp. 149–154, 2014.
  • T. Goto and M. Suzuki, “A boundary integral equation method for nonlinear heat conduction problems with temperature-dependent material properties,” Int. J. Heat Mass Transf., vol. 39, no. 4, pp. 823–830, 1996. DOI: 10.1016/0017-9310(95)00167-0.
  • M. Mohammadi, M. R. Hematiyan, and L. Marin, “Boundary element analysis of nonlinear transient heat conduction problems involving non-homogenous and nonlinear heat sources using time-dependent fundamental solutions,” Eng. Anal. Bound. Elem., vol. 34, no. 7, pp. 655–665, 2010. DOI: 10.1016/j.enganabound.2010.02.004.
  • M. Cui, B. B. Xu, W. Z. Feng, Y. W. Zhang, X. W. Gao, and H. F. Peng, “A radial integration boundary element method for solving transient heat conduction problems with heat sources and variable thermal conductivity,” Numer. Heat Transf., Part B, vol. 73, no. 1, pp. 1–18, 2018. DOI: 10.1080/10407790.2017.1420319.
  • A. Singh, I. V. Singh, and R. Prakash, “Meshless element free Galerkin method for unsteady nonlinear heat transfer problems,” Int. J. Heat Mass Transf., vol. 50, no. 5-6, pp. 1212–1219, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.039.
  • A. Khosravifard, M. R. Hematiyan, and L. Marin, “Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method,” Appl. Math. Model, vol. 35, no. 9, pp. 4157–4174, 2011. DOI: 10.1016/j.apm.2011.02.039.
  • H. M. Zhou, G. Qin, and Z. Y. Wang, “Heat conduction analysis for irregular functionally graded material geometries using the meshless weighted least square method with temperature-dependent material properties,” Numer. Heat Transf., Part B, vol. 75, no. 5, pp. 312–324, 2019. DOI: 10.1080/10407790.2019.1627814.
  • J. N. Tang et al., “A new procedure for solving steady-state and transient-state nonlinear radial conduction problems of nuclear fuel rods,” Anna. Nucl. Energy, vol. 110, pp. 492–500, 2017. DOI: 10.1016/j.anucene.2017.05.061.
  • K. Yang, H. F. Peng, J. Wang, C. H. Xing, and X. W. Gao, “Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity,” Int. J. Heat Mass Transf., vol. 108, pp. 1551–1559, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.030.
  • K. Yang, W. Z. Feng, J. Wang, and X. W. Gao, “RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity,” Eng. Anal. Bound. Elem., vol. 87, pp. 1–8, 2018. DOI: 10.1016/j.enganabound.2017.11.001.
  • M. Cui, B. B. Xu, J. Lv, X. W. Gao, and Y. W. Zhang, “Numerical solution of multi-dimensional transient nonlinear heat conduction problems with heat sources by an extended element differential method,” Int. J. Heat Mass Transf., vol. 126, pp. 1111–1119, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.100.
  • X. W. Gao et al., “Element differential method for solving general heat conduction problems,” Int. J. Heat Mass Transf., vol. 115, pp. 882–894, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.039.
  • X. W. Gao, H. Y. Liu, B. B. Xu, M. Cui, and J. Lv, “Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems,” Numer. Heat Transf., Part B, vol. 73, no. 4, pp. 206–224, 2018. DOI: 10.1080/10407790.2018.1461491.
  • M. Girault and D. Petit, “Identification methods in nonlinear heat conduction. Part I: Odel reduction,” Int. J. Heat Mass Transf., vol. 48, no. 1, pp. 105–118, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.06.032.
  • G. Kerschen, J. C. Golinval, A. F. Vakakis, and L. A. Bergman, “The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview,” Nonlin. Dynam., vol. 41, no. 1–3, pp. 147–169, 2005. DOI: 10.1007/s11071-005-2803-2.
  • A. Fic, R. A. Biaecki, and A. J. Kassab, “Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method,” Numer. Heat Transf., Part B, vol. 48, no. 2, pp. 103–124, 2005. DOI: 10.1080/10407790590935920.
  • E. Monteiro, J. Yvonnet, and Q. C. He, “Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction,” Comput. Mater. Sci., vol. 42, no. 4, pp. 704–712, 2008. DOI: 10.1016/j.commatsci.2007.11.001.
  • D. X. Han, B. Yu, and X. Y. Zhang, “Study on a BFC-based POD-Galerkin reduced-order model for the unsteady-state variable-property heat transfer problem,” Numer. Heat Transf., Part B, vol. 65, no. 3, pp. 256–281, 2014. DOI: 10.1080/10407790.2013.849989.
  • A. K. Gaonkar and S. S. Kulkarni, “Application of multilevel scheme and two level discretization for POD based model order reduction of nonlinear transient heat transfer problems,” Comput. Mech., vol. 55, no. 1, pp. 179–191, 2015. DOI: 10.1007/s00466-014-1089-y.
  • J. X. Hu, B. J. Zheng, and X. W. Gao, “Reduced order model analysis method via proper orthogonal decomposition for transient heat conduction,” Sci. Sin. Phys., Mech. Astron., vol. 45, no. 1, pp. 014602, 2015. DOI: 10.1360/SSPMA2013-00041.
  • X. W. Gao, J. X. Hu, and S. Z. Huang, “A proper orthogonal decomposition analysis method for multimedia heat conduction problems,” ASME J. Heat Transf., vol. 138, no. 7, pp. 071301, 2016.
  • R. A. Biaecki, A. J. Kassab, and A. Fic, “Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis,” Int. J. Numer. Methods Eng., vol. 62, no. 6, pp. 774–797, 2005. DOI: 10.1002/nme.1205.
  • L. Sirovich, “Turbulence and the dynamics of coherent structures. Part I: coherent structures,” Quart. Appl. Math., vol. 45, no. 3, pp. 561–571, 1987. DOI: 10.1090/qam/910462.
  • R. Ghosh and Y. Joshi, “Error estimation in POD-based dynamic reduced-order thermal modeling of data centers,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 698–707, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.013.
  • W. L. Wood and R. W. Lewis, “A comparison of time marching schemes for the transient heat conduction equation,” Int. J. Numer. Methods Eng., vol. 9, no. 3, pp. 679–689, 1975. DOI: 10.1002/nme.1620090314.
  • T. J. R. Hughes, “Unconditionally stable algorithms for nonlinear heat conduction,” Comput. Methods Appl. Mech. Eng., vol. 10, no. 2, pp. 135–139, 1977. DOI: 10.1016/0045-7825(77)90001-9.
  • M. Cui, K. Yang, X. Xu, S. Wang, and X. W. Gao, “A modified Levenberg–Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems,” Int. J. Heat Mass Transf., vol. 97, pp. 908–916, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.085.
  • K. E. Ragab and L. El-Gabry, “Heat transfer analysis of the surface of a nozzle guide vane in a transonic annular cascade,” J. Therm. Sci. Eng. Appl., vol. 11, no. 1, pp. 011019, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.