Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 2
86
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Daily diffuse solar radiation estimation using adaptive neuro-fuzzy inference system technique

Pages 138-151 | Received 13 Jul 2019, Accepted 05 Nov 2019, Published online: 14 Nov 2019

References

  • S. Karthikeyan, G. R. Solomon, V. Kumaresan, and R. Velraj, “Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications,” Energy Conver. Manage., vol. 78, pp. 74–80, 2014. DOI: 10.1016/j.enconman.2013.10.042.
  • K. Benmouiza, and A. Cheknane, “Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models,” Energy Conver. Manage., vol. 75, pp. 561–569, 2013. DOI: 10.1016/j.enconman.2013.07.003.
  • T. K. Tullius, and Y. Bayazitoglu, “Analysis of a hybrid nanofluid exposed to radiation,” Numer. Heat Transf., B: Fundam., vol. 69, no. 4, pp. 271–286, 2016. DOI: 10.1080/10407790.2015.1104210.
  • M. Augspurger, and H. S. Udaykumar, “A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device,” Numer. Heat Transf., B: Fundam., vol. 69, no. 3, pp. 179–196, 2016. DOI: 10.1080/10407790.2015.1097106.
  • M. M. Rahman, S. Saha, S. Mojumder, A. G. Naim, R. Saidur, and T. A. Ibrahim, “Effect of sine-squared thermal boundary condition on augmentation of heat transfer in a triangular solar collector filled with different nanofluids,” Numer. Heat Transf., B: Fundam., vol. 68, no. 1, pp. 53–74, 2015. DOI: 10.1080/10407790.2014.992058.
  • M. Benghanem, A. Mellit, and S. N. Alamri, “ANN-based modeling and estimation of daily global solar radiation data: A case study,” Energy Conver. Manage., vol. 50, no. 7, pp. 1644–1655, 2009. DOI: 10.1016/j.enconman.2009.03.035.
  • G. Landeras, J. J. López, O. Kisi, and J. Shiri, “Comparison of gene expression programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain),” Energy Conver. Manage., vol. 62, pp. 1–13, 2012. DOI: 10.1016/j.enconman.2012.03.025.
  • J. L. Torres, M. De Blas, A. García, and A. de Francisco, “Comparative study of various models in estimating hourly diffuse solar irradiance,” Renew. Energy, vol. 35, no. 6, pp. 1325–1332, 2010. DOI: 10.1016/j.renene.2009.11.025.
  • H. S. Li, W. B. Ma, X. L. Wang, and Y. W. Lian, “Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study,” Renew. Energy, vol. 36, no. 7, pp. 1944–1948, 2011. DOI: 10.1016/j.renene.2011.01.006.
  • H. S. Li, X. B. Bu, Y. W. Lian, L. Zhao, and W. B. Ma, “Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China,” Renew. Energy, vol. 44, pp. 469–473, 2012. DOI: 10.1016/j.renene.2012.01.104.
  • I. Karakoti, P. K. Das, and S. K. Singh, “Predicting monthly mean daily diffuse radiation for India,” Appl. Energy, vol. 91, no. 1, pp. 412–425, 2012. DOI: 10.1016/j.apenergy.2011.10.012.
  • M. Bortolini, M. Gamberi, A. Graziani, R. Manzini, and C. Mora, “Multi-location models for the estimation of the horizontal daily diffuse fraction of solar radiation in Europe,” Energy Conver. Manage, vol. 67, pp. 208–216, 2013. DOI: 10.1016/j.enconman.2012.11.008.
  • A. Sigal, E. P. M. Leiva, and C. R. Rodríguez, “Assessment of the potential for hydrogen production from renewable resources in Argentina,” Int. J. Hydrogen Energy, vol. 39, no. 16, pp. 8204–8214, 2014. DOI: 10.1016/j.ijhydene.2014.03.157.
  • C. Magarreiro, M. C. Brito, and P. M. M. Soares, “Assessment of diffuse radiation models for cloudy atmospheric conditions in the Azores region,” Sol. Energy, vol. 108, pp. 538–547, 2014. DOI: 10.1016/j.solener.2014.08.003.
  • R. Tapakis, S. Michaelides, and A. G. Charalambides, “Computations of diffuse fraction of global irradiance: Part 1 – Analytical modeling,” Sol. Energy, vol. 139, pp. 711–722, 2016. DOI: 10.1016/j.solener.2014.10.005.
  • K. Bakirci, “Models for the estimation of diffuse solar radiation for typical cities in Turkey,” Energy, vol. 82, pp. 827–838, 2015. DOI: 10.1016/j.energy.2015.01.093.
  • B. Yaniktepe, and Y. A. Genc, “Establishing new models for predicting the global solar radiation on horizontal surface,” Int. J. Hydrogen Energy, vol. 40, no. 44, pp. 15278–15283, 2015. DOI: 10.1016/j.ijhydene.2015.02.064.
  • M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic, “Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation,” Renew. Sust. Energy Rev., vol. 56, pp. 246–260, 2016. DOI: 10.1016/j.rser.2015.11.058.
  • H. Khorasanizadeh, K. Mohammadi, and N. Goudarzi, “Prediction of horizontal diffuse solar radiation using clearness index based empirical models: A case study,” Int. J. Hydrogen Energy, vol. 41, no. 47, pp. 21888–21898, 2016. DOI: 10.1016/j.ijhydene.2016.09.198.
  • B. Mohamed, B. Ali, B. Ahmed, B. Ahmed, L. Salah, and D. Rachid, “Study of hydrogen production by solar energy as tool of storing and utilization renewable energy for the desert areas,” Int. J. Hydrogen Energy, vol. 41, no. 45, pp. 20788–20806, 2016. DOI: 10.1016/j.ijhydene.2016.07.034.
  • M. M. A. Ei-Samie, M. H. Shedid, and M. A. M. Hassan, “Numerical study of a solar thermoelectric generator with nanofluids based microcooling system,” Numer. Heat Transf., A: Appl., vol. 74, no. 12, pp. 1804–1826, 2018. DOI: 10.1080/10407782.2018.1562737.
  • W. Wu, R. Uhlig, R. Buck, and R. Pitz-Paal, “Numerical simulation of a centrifugal particle receiver for high-temperature concentrating solar applications,” Numer. Heat Transf., A: Appl, vol. 68, no. 2, pp. 133–149, 2015. DOI: 10.1080/10407782.2014.977144.
  • X. H. Xue, and H. W. Zhou, “Soft computing methods for predicting daily global solar radiation,” Numer. Heat Transf., B: Fundam., vol. 76, no. 1, pp. 18–31, 2019. DOI: 10.1080/10407790.2019.1637629.
  • D. Petković, Ž. Ćojbašič, and V. Nikolić, “Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation,” Renew. Sust. Energy Rev., vol. 28, pp. 191–195, 2013. DOI: 10.106/j.rser.2013.07.049.
  • S. Alam, S. C. Kaushik, and S. N. Garg, “Assessment of diffuse solar energy under general sky condition using artificial neural network,” Appl. Energy, vol. 86, no. 4, pp. 554–564, 2009. DOI: 10.1016/j.apenergy.2008.09.004.
  • O. Senkal, and T. Kuleli, “Estimation of solar radiation over Turkey using artificial neural network and satellite data,” Appl. Energy, vol. 86, pp. 1222–1228, 2009. DOI: 10.1016/j.apenergy.2008.06.003.
  • D. A. Fadare, “Modelling of solar energy potential in Nigeria using artificial neural network model,” Appl. Energy, vol. 86, no. 9, pp. 1410–1422, 2009. DOI: 10.1016/j.apenergy.2008.12.005.
  • C. Voyant, C. Darras, M. Muselli, C. Paoli, M. L. Nivet, and P. Poggi, “Bayesian rules and stochastic models for high accuracy prediction of solar radiation,” Appl. Energy, vol. 114, pp. 218–226, 2014.vol DOI: 10.1016/j.apenergy.2013.09.051.
  • B. Amrouche, and X. L. Pivert, “Artificial neural network based daily local forecasting for global solar radiation,” Appl. Energy, vol. 130, pp. 333–341, 2014. DOI: 10.1016/j.apenergy.2014.05.055.
  • S. Shamshirband, K. Mohammadi, H. L. Chen, G. N. Samy, D. Petković, and C. Ma, “Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran,” J. Atmos. Sol-Terr. Phys., vol. 134, no. 3, pp. 109–117, 2015. DOI: 10.1016/j.jastp.2015.09.014.
  • S. Shamshirband, K. Mohammadi, J. Piri, D. Petković, and A. Karim, “Hybrid auto-regressive neural network model for estimating global solar radiation in Bandar Abbas,” Iran, Environ. Earth Sci., vol. 75, no.2, pp. 172–184, 2016. DOI: 10.1007/s12665-015-4970-x.
  • S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267–278, 1994. DOI: 10.3233/IFS-1994-2306.
  • H. S. Li, X. B. Bu, Z. Long, L. Zhao, and W. B. Ma, “Calculating the diffuse solar radiation in regions without solar radiation measurements,” Energy, vol. 44, no. 1, pp. 611–615, 2012. 2012.05.033. DOI: 10.1016/j.energy,.
  • J. A. Duffie, and W. A. Backman, Solar Engineering of Thermal Processes. New York: Wiley, 1991.
  • G. H. Roshani, S. A. H. Feghhi, and S. Setayeshi, “Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network,” Radiat. Meas., vol. 82, pp. 154–162, 2015. DOI: 10.1016/j.radmeas.2015.07.006.
  • E. E. Zadeh, S. A. H. Feghhi, G. H. Roshani, and A. Rezaei, “Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis,” Eur. Phys. J. Plus., vol. 131, pp. 167, 2016. DOI: 10.1140/epjp/i2016-16167-6.
  • I. S. Han, and C. B. Chung, “Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine,” Int. J. Hydrogen Energy, vol. 41, no. 24, pp. 10202–10211, 2016. DOI: 10.1016/j.ijhydene.2016.04.247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.