Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 2
225
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 2: Advanced algorithm

, &
Pages 116-137 | Received 08 Jul 2019, Accepted 04 Nov 2019, Published online: 26 Nov 2019

References

  • N. J. Falkiewicz and C. E. S. Cesnik, “Proper orthogonal decomposition for reduced-order thermal solution in hypersonic aerothermoelastic simulations,” AIAA J., vol. 49, no. 5, pp. 994–1009, 2011. DOI: 10.2514/1.J050701.
  • B. X. Wang, W. H. Zhang, G. N. Xie, Y. J. Xu, and M. Y. Xiao, “Multiconfiguration shape optimization of internal cooling systems of a turbine guide vane based on thermomechanical and conjugate heat transfer analysis,” J. Heat Transfer, vol. 137, pp. 061004, 2015.
  • A. Riccio, “Optimum design of ablative thermal protection systems for atmospheric entry vehicles,” Appl. Therm. Eng., vol. 119, pp. 541–552, 2017. DOI: 10.1016/j.applthermaleng.2017.03.053.
  • E. L. Wilson, K. J. Bathe, and F. E. Peterson, “Finite element analysis of linear and nonlinear heat transfer,” Nucl. Eng. Des., vol. 29, no. 1, pp. 110–124, 1974. DOI: 10.1016/0029-5493(74)90101-0.
  • R. Bialecki and A. J. Nowak, “Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions,” Appl. Math. Model, vol. 5, no. 6, pp. 417–421, 1981. DOI: 10.1016/S0307-904X(81)80024-8.
  • T.-M. Shih, C.-H. Sung, and B. Yang, “A numerical method for solving nonlinear heat transfer equations,” Numer. Heat Transfer Part B, vol. 54, no. 4, pp. 338–353, 2008. DOI: 10.1080/10407790802182687.
  • E. Li et al., “Smoothed finite element method with exact solutions in heat transfer problems,” Int. J. Heat Mass Transfer, vol. 78, pp. 1219–1231, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.078.
  • M. Girault and D. Petit, “Identification methods in nonlinear heat conduction. Part I: Model reduction,” Int. J. Heat Mass Transfer, vol. 48, no. 1, pp. 105–118, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.06.032.
  • K. J. Bathe and S. Gracewski, “On nonlinear dynamic analysis using substructuring and mode superposition,” Comput. Struct., vol. 13, no. 5-6, pp. 699–707, 1981. DOI: 10.1016/0045-7949(81)90032-8.
  • S. R. Idelsohn and A. Cardona, “A reduction method for nonlinear structural dynamic analysis,” Comput. Method Appl. Mech. Eng., vol. 49, no. 3, pp. 253–279, 1985. DOI: 10.1016/0045-7825(85)90125-2.
  • M. Rewienski and J. White, “A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 2, pp. 155–170, 2003. DOI: 10.1109/TCAD.2002.806601.
  • J. R. Phillips, “Projection-based approaches for model reduction of weakly nonlinear, time-varying systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 2, pp. 171–187, 2003. DOI: 10.1109/TCAD.2002.806605.
  • Z. Bai and D. Skoogh, “A projection method for model reduction of bilinear dynamical systems,” Linear Algebra Appl., vol. 415, no. 2-3, pp. 406–425, 2006. DOI: 10.1016/j.laa.2005.04.032.
  • B. Podvin and Y. Fraigneau, “POD-based wall boundary conditions for the numerical simulation of turbulent channel flow,” J. Turbul., vol. 15, no. 3, pp. 145–171, 2014. DOI: 10.1080/14685248.2014.884279.
  • R. Djeddi, A. Kaminsky, and K. Ekici, “Convergence acceleration of fluid dynamics solvers using a reduced-order model,” AIAA J., vol. 55, no. 9, pp. 3059–3071, 2017. DOI: 10.2514/1.J055645.
  • S. Lall, P. Krysl, and J. E. Marsden, “Structure-preserving model reduction for mechanical systems,” Physica D, vol. 184, no. 1-4, pp. 304–318, 2003. DOI: 10.1016/S0167-2789(03)00227-6.
  • G. Kerschen, J. C. Golinval, A. F. Vakakis, and L. A. Bergman, “The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview,” Nonlinear Dyn., vol. 41, no. 1-3, pp. 147–169, 2005. DOI: 10.1007/s11071-005-2803-2.
  • A. Fic, R. A. Biaecki, and A. J. Kassab, “Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method,” Numer. Heat Transfer Part B, vol. 48, no. 2, pp. 103–124, 2005. DOI: 10.1080/10407790590935920.
  • D. X. Han, B. Yu, and X. Y. Zhang, “Study on a BFC-Based POD-Galerkin reduced-order model for the unsteady-state variable-property heat transfer problem,” Numer. Heat Transfer Part B, vol. 65, no. 3, pp. 256–281, 2014. DOI: 10.1080/10407790.2013.849989.
  • A. K. Gaonkar and S. S. Kulkarni, “Application of multilevel scheme and two level discretization for POD based model order reduction of nonlinear transient heat transfer problems,” Comput. Mech., vol. 55, no. 1, pp. 179–191, 2015. DOI: 10.1007/s00466-014-1089-y.
  • D. Ryckelynck, “A priori hyperreduction method: an adaptive approach,” J. Comput. Phys., vol. 202, no. 1, pp. 346–366, 2005. DOI: 10.1016/j.jcp.2004.07.015.
  • S. Chaturantabut, and D. C. Sorensen, “Nonlinear model reduction via discrete empirical interpolation,” SIAM J. Sci. Comput., vol. 32, no. 5, pp. 2737–2764, 2010. DOI: 10.1137/090766498.
  • S. Z. Feng, X. Y. Cui, and A. M. Li, “Fast and efficient analysis of transient nonlinear heat conduction problems using combined approximations (CA) method,” Int. J. Heat Mass Transfer, vol. 97, pp. 638–644, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.061.
  • C. Ding, X. Cui, R. R. Deokar, G. Li, Y. Cai, and K. K. Tamma, “An isogeometric independent coefficients (IGA-IC) reduced order method for accurate and efficient transient nonlinear heat conduction analysis,” Numer. Heat Transf. Part A, vol. 73, no. 10, pp. 667–684, 2018. DOI: 10.1080/10407782.2018.1470420.
  • M. A. Hogge, “A comparison of two- and three-level integration schemes for non-linear heat conduction,” in Numerical Methods in Heat Transfer. R. W. Lewis, K. Morgan and O. C. Zienkiewics, Ed(s). Chichester, UK: Wiley, 1981, pp. 75–90.
  • K. Yang, W. Z. Feng, J. Wang, and X. W. Gao, “RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity,” Eng. Anal. Bound. Elem., vol. 87, pp. 1–8, 2018. DOI: 10.1016/j.enganabound.2017.11.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.