Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 1
304
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A level set redistancing algorithm for simulation of two-phase flow

&
Pages 30-53 | Received 28 Jan 2020, Accepted 19 Mar 2020, Published online: 06 Apr 2020

References

  • S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent speed algorithms based on hamilton-jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. DOI: 10.1016/0021-9991(88)90002-2.
  • S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. New York, NY: Springer-Verlag, 2003.
  • Y. F. Yap, J. C. Chai, T. N. Wong, K. C. Toh, and H. Y. Zhang, “A global mass correction scheme for the level-set method,” Numer. Heat Transfer B., vol. 50, no. 5, pp. 455–472, 2006. DOI: 10.1080/10407790600646958.
  • H. Hwang and G. Son, “A level-set method for the direct numerical simulation of particle motion in droplet evaporation,” Numer. Heat Transfer B., vol. 68, no. 6, pp. 479–494, 2015. DOI: 10.1080/10407790.2015.1052309.
  • A. Zhang et al., “Development of a VOF + LS + SPP method based on FLUENT for simulating bubble behaviors in the electric field,” Numer. Heat Transfer B., vol. 71, no. 2, pp. 186–201, 2017. DOI: 10.1080/10407790.2016.1265308.
  • J. Mao, L. Zhao, X. Liu, J. Cheng, and E. Avital, “A three-phases model for the simulation of landslide-generated waves using the improved conservative level set method,” Comput. Fluids, vol. 159, pp. 243–253, 2017. DOI: 10.1016/j.compfluid.2017.10.007.
  • Z. H. Gu, H. L. Wen, S. Ye, R. D. An, and C. H. Yu, “Development of a mass-preserving level set redistancing algorithm for simulation of rising bubble,” Numer. Heat Transfer B., vol. 74, no. 4, pp. 699–722, 2018. DOI: 10.1080/10407790.2018.1525157.
  • J. Lee and G. Son, “A level-set method for analysis of particle motion in an evaporating microdroplet,” Numer. Heat Transfer B., vol. 67, no. 1, pp. 25–46, 2015. DOI: 10.1080/10407790.2014.949556.
  • Z. Ge, J. C. Loiseau, O. Tammisola, and L. Brandt, “An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces,” J. Comput. Phys., vol. 353, pp. 435–459, 2018. DOI: 10.1016/j.jcp.2017.10.046.
  • M. Choi, G. Son, and W. Shim, “A level-set method for droplet impact and penetration into a porous medium,” Comput. Fluids, vol. 145, pp. 153–166, 2017. DOI: 10.1016/j.compfluid.2016.12.014.
  • G. Son and V. K. Dhir, “A level set method for analysis of film boiling on an immersed solid surface,” Numer. Heat Transfer B., vol. 52, no. 2, pp. 153–177, 2007. DOI: 10.1080/10407790701347720.
  • L. Zhao et al., “Finite element implementation of an improved conservative level set method for two-phase flow,” Comput. Fluids, vol. 100, pp. 138–154, 2014. DOI: 10.1016/j.compfluid.2014.04.027.
  • C. H. Yu and T. W. H. Sheu, “Simulation of incompressible free surface flow using the volume preserving level set method,” Commun. Comput. Phys., vol. 18, no. 4, pp. 931–956, 2015. DOI: 10.4208/cicp.081214.240515s.
  • Y. L. Li and C. H. Yu, “Research on dam-break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods,” Ocean Eng., vol. 178, no. 4, pp. 442–462, 2019. DOI: 10.1016/j.oceaneng.2019.02.064.
  • C. H. Yu, H. L. Wen, Z. H. Gu, and R. D. An, “Numerical simulation of dam-break flow impacting a stationary obstacle by a CLSVOF/IB method,” Commun. Nonlinear. Sci., vol. 79, pp. 104934, 2019. DOI: 10.1016/j.cnsns.2019.104934.
  • M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys., vol. 114, no. 1, pp. 146–159, 1994. DOI: 10.1006/jcph.1994.1155.
  • D. Hartmann, M. Meinke, and W. Schrӧder, “Differential equation based constrained reinitialization for level set methods,” J. Comput. Phys., vol. 227, no. 14, pp. 6821–6845, 2008.
  • D. Hartmann, M. Meinke, and W. Schrӧder, “On accuracy and efficiency of constrained reinitialization,” J. Comput. Phys., vol. 63, no. 11, pp. 1347–1358, 2010.
  • D. Hartmann, M. Meinke, and W. Schrӧder, “The constrained reinitialization equation for level set methods,” J. Comput. Phys., vol. 229, no. 5, pp. 1514–1535, 2010. DOI: 10.1016/j.jcp.2009.10.042.
  • J. Zhang and P. Yue, “A high-order and interface-preserving discontinuous galerkin method for level-set reinitialization,” J. Comput. Phys., vol. 378, pp. 634–664, 2019. DOI: 10.1016/j.jcp.2018.11.029.
  • D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “A hybrid particle level set method for improved interface capturing,” J. Comput. Phys., vol. 183, no. 1, pp. 83–116, 2002. DOI: 10.1006/jcph.2002.7166.
  • Z. Wang, J. Yang, and F. Stern, “An improved particle correction procedure for the particle level set method,” J. Comput. Phys., vol. 228, no. 16, pp. 5819–5837, 2009. DOI: 10.1016/j.jcp.2009.04.045.
  • L. Jiang, F. Liu, and D. Chen, “A fast particle level set method with optimized particle correction procedure for interface capturing,” J. Comput. Phys., vol. 299, pp. 804–819, 2015. DOI: 10.1016/j.jcp.2015.06.039.
  • M. Sussman and E. G. Puckett, “A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows,” J. Comput. Phys., vol. 162, no. 2, pp. 301–337, 2000. DOI: 10.1006/jcph.2000.6537.
  • Y. Y. Tsui, C. Y. Liu, and S. W. Lin, “Coupled level-set and volume-of-fluid method for two-phase flow calculations,” Numer. Heat Transfer B., vol. 71, no. 2, pp. 173–185, 2017. DOI: 10.1080/10407790.2016.1265311.
  • Z. Z. Cao, D. L. Sun, B. Yu, and J. J. Wei, “A coupled volume of fluid and level set method based on analytic plic for unstructured quadrilateral grids,” Numer. Heat Transfer B., vol. 73, no. 4, pp. 189–205, 2018. DOI: 10.1080/10407790.2018.1454758.
  • S. N. Kumar and B. Premachandran, “A coupled level set and volume of fluid method on unstructured grids for the direct numerical simulations of two-phase flows including phase change,” Int. J. Heat Mass Transf., vol. 122, pp. 182–203, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.091.
  • X. Li, Q. Li, J. Ouyang, and B. Yang, “Numerical simulation of gas-assisted injection molding using CLSVOF method,” Appl. Math. Model, vol. 36, no. 5, pp. 2262–2274, 2012. DOI: 10.1016/j.apm.2011.08.023.
  • K. Yokoi, “A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer,” J. Sci. Comput., vol. 35, no. 2-3, pp. 372–396, 2008. no DOI: 10.1007/s10915-008-9202-z.
  • W. Hong and Y. Wang, “A coupled level set and volume-of-fluid simulation for heat transfer of the double droplet impact on a spherical liquid film,” Numer. Heat Transfer B., vol. 71, no. 4, pp. 359–371, 2017. DOI: 10.1080/10407790.2017.1293960.
  • T. Wang, H. Li, Y. Feng, and D. Shi, “A coupled volume-of-fluid and level set (VOSET) method on dynamically adaptive quadtree grids,” Int. J. Heat Mass Transf., vol. 67, pp. 70–73, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.006.
  • K. Ling, Z. H. Li, D. L. Sun, Y. L. He, and W. Q. Tao, “A three-dimensional volume of fluid & level set (VOSET) method for incompressible two-phase flow,” Comput. Fluids, vol. 118, pp. 293–304, 2015. DOI: 10.1016/j.compfluid.2015.06.018.
  • M. R. Ansari, R. Azadi, and E. Salimi, “Capturing of interface topological changes in two-phase gas-liquid flows using a coupled volume-of-fluid and level-set method (VOSET),” Comput. Fluids, vol. 125, pp. 82–100, 2016. DOI: 10.1016/j.compfluid.2015.09.014.
  • Z. Cao, D. Sun, B. Yu, and J. Wei, “A coupled volume-of-fluid and level set (VOSET) method based on remapping algorithm for unstructured triangular grids,” Int. J. Heat Mass Transf., vol. 111, pp. 232–245, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.096.
  • D. Sun, B. Yu, S. Yu, P. Wang, and W. Liu, “A voset method combined with IDEAL algorithm for 3d two-phase flows with large density and viscosity ratio,” Int. J. Heat Mass Transf., vol. 114, pp. 155–168, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.050.
  • K. Luo, C. Shao, Y. Yang, and J. Fan, “A mass conserving level set method for detailed numerical simulation of liquid atomization,” J. Comput. Phys., vol. 298, pp. 495–519, 2015. DOI: 10.1016/j.jcp.2015.06.009.
  • D. He and H. Huang, “A constrained level set method for simulating the formation of liquid bridges,” Commun. Comput. Phys., vol. 12, no. 2, pp. 577–594, 2012. DOI: 10.4208/cicp.181110.090811s.
  • Y. Zhang et al., “A level .set immersed boundary method for water entry and exit,” CiCP, vol. 8, no. 2, pp. 265–288, 2010. DOI: 10.4208/cicp.060709.060110a.
  • H. Z. Yuan et al., “A free energy-based surface tension force model for simulation of multiphase flows by level-set method,” J. Comput. Phys., vol. 345, pp. 404–426, 2017. DOI: 10.1016/j.jcp.2017.05.020.
  • H. Z. Yuan, C. Shu, Y. Wang, and S. Shu, “A simple mass-conserved level set method for simulation of multiphase flows,” Phys. Fluids, vol. 30, no. 4, pp. 40908, 2018.
  • G. S. Jiang and D. P. Peng, “Weighted ENO schemes for hamilton-jacobi equations,” SIAM J. Sci. Comput., vol. 21, no. 6, pp. 2126–2143, 2000. DOI: 10.1137/S106482759732455X.
  • C. H. Yu and T. W. H. Sheu, “Development of a combined compact difference scheme to simulate soliton collision in a shallow water equation,” Commun. Comput. Phys., vol. 19, no. 3, pp. 603–631, 2016. DOI: 10.4208/cicp.290914.030615a.
  • G. S. Jiang and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys., vol. 126, no. 1, pp. 202–228, 1996. DOI: 10.1006/jcph.1996.0130.
  • C. H. Yu, D. Wang, Z. He, and T. Pähtz, “An optimized dispersion-relation-preserving combined compact difference scheme to solve advection equations,” J. Comput. Phys., vol. 300, pp. 92–115, 2015. DOI: 10.1016/j.jcp.2015.07.051.
  • Z. H. Gu, H. L. Wen, C. H. Yu, and T. W. H. Sheu, “Interface-preserving level set method for simulating dam-break flows,” J. Comput. Phys., vol. 374, pp. 249–280, 2018. DOI: 10.1016/j.jcp.2018.07.057.
  • C. W. Shu, “Total-variation-diminishing time discretizations,” SIAM J. Sci. Stat. Comput., vol. 9, no. 6, pp. 1073–1084, 1988. DOI: 10.1137/0909073.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: McGraw-Hill, 1980.
  • M. Sussman and E. Fatemi, “An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow,” SIAM J. Sci. Comput., vol. 20, no. 4, pp. 1165–1191, 1999. DOI: 10.1137/S1064827596298245.
  • S. T. Zalesak, “Fully multidimensional flux-corrected transport algorithms for fluids,” J. Comput. Phys., vol. 31, no. 3, pp. 335–362, 1979. DOI: 10.1016/0021-9991(79)90051-2.
  • Z. Wang, J. Yang, B. Koo, and F. Stern, “A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves,” Int. J. Multiphas. Flow, vol. 35, no. 3, pp. 227–246, 2009. DOI: 10.1016/j.ijmultiphaseflow.2008.11.004.
  • W. Yue, C. L. Lin, and V. C. Patel, “Numerical simulation of unsteady multidimensional free surface motions by level set method,” Int. J. Numer. Meth. Fluids, vol. 42, no. 8, pp. 853–884, 2003. DOI: 10.1002/fld.555.
  • D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski, “Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows,” J. Comput. Phys., vol. 152, no. 2, pp. 423–456, 1999. DOI: 10.1006/jcph.1998.6168.
  • J. Klostermann, K. Schaake, and R. Schwarze, “Numerical simulation of a single rising bubble by vof with surface compression,” Int. J. Numer. Meth. Fluids, vol. 71, no. 8, pp. 960–982, 2013. DOI: 10.1002/fld.3692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.