Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 1
171
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows

ORCID Icon, , , , &
Pages 1-29 | Received 12 Feb 2020, Accepted 19 Mar 2020, Published online: 17 Apr 2020

References

  • S. B. Pope, “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci., vol. 11, no. 2, pp. 119–192, 1985. DOI: 10.1016/0360-1285(85)90002-4.
  • P. Givi, “Model free simulations of turbulent reactive flows,” Prog. Energy Combust. Sci., vol. 15, no. 1, pp. 1–107, 1989. DOI: 10.1016/0360-1285(89)90006-3.
  • S. B. Pope, “Computations of turbulent combustion: Progress and challenges,” Proceedings of 23rd Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1990, pp. 591–612. DOI: 10.1016/S0082-0784(06)80307-3.
  • C. Madnia and P. Givi, “Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence,” in Large Eddy Simulations Complex Engineering Geophysical Flows, B. Galperin and S. A. Orszag, Eds. Cambridge; New York: Cambridge University Press. pp. 315–346, 1993.
  • S. B. Pope, “Mapping closures for turbulent mixing and reaction,” Theoret. Comput. Fluid Dynamics, vol. 2, no. 5–6, pp. 255–270, 1991. DOI: 10.1007/BF00271466.
  • S. B. Pope, “Lagrangian PDF methods for turbulent flows,” Annu. Rev. Fluid Mech., vol. 26, no. 1, pp. 23–63, 1994. DOI: 10.1146/annurev.fl.26.010194.000323.
  • F. Gao and E. E. O’Brien, “A large-eddy simulation scheme for turbulent reacting flows,” Phys. Fluids A, vol. 5, no. 6, pp. 1282–1284, 1993. DOI: 10.1063/1.858617.
  • P. J. Colucci, F. A. Jaberi, P. Givi and S. B. Pope, “Filtered density function for large eddy simulation of turbulent reacting flows,” Phys. Fluids, vol. 10, no. 2, pp. 499–515, 1998. DOI: 10.1063/1.869537.
  • F. A. Jaberi, P. J. Colucci, S. James, P. Givi and S. B. Pope, “Filtered mass density function for large-eddy simulation of turbulent reacting flows,” J. Fluid Mech., vol. 401, pp. 85–121, 1999. DOI: 10.1017/S0022112099006643.
  • L. Y. M. Gicquel, P. Givi, F. A. Jaberi and S. B. Pope, “Velocity filtered density function for large-eddy simulation of turbulent flows,” Phys. Fluids, vol. 14, no. 3, pp. 1196–1213, 2002. DOI: 10.1063/1.1436496.
  • M. R. H. Sheikhi, P. Givi and S. B. Pope, “Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows,” Phys. Fluids, vol. 19, no. 9, pp. 1–29, 2007. DOI: 10.1063/1.2768953.
  • M. R. H. Sheikhi, P. Givi and S. B. Pope, “Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows,” Phys. Fluids, vol. 21, no. 7, pp. 1–14, 2009. DOI: 10.1063/1.3153907.
  • M. Safari, F. Hadi and M. Sheikhi, “Progress in the prediction of entropy generation in turbulent reacting flows using large eddy simulation,” Entropy, vol. 16, no. 10, pp. 5159–5177, 2014. DOI: 10.3390/e16105159.
  • M. Safari and M. Sheikhi, “Large eddy simulation-based analysis of entropy generation in a turbulent nonpremixed flame,” Energy, vol. 78, pp. 451–457, 2014. DOI: 10.1016/j.energy.2014.10.032.
  • M. Sheikhi, M. Safari and F. Hadi, “Entropy filtered density function for large eddy simulation of turbulent flows,” AIAA Paper, vol. 53, no. 9, pp. 2571–2587, 2015. DOI: 10.2514/1.J053679.
  • A. Banaeizadeh, Z. Li and F. A. Jaberi, “Compressible scalar filtered mass density function model for high-speed turbulent flows,” AIAA Paper, vol. 49, no. 10, pp. 2130–2143, 2011. DOI: 10.2514/1.J050779.
  • M. Nik, P. Givi, C. Madnia and S. Pope, “EPVS-FMDF for LES of high-speed turbulent flows,” AIAA Paper. 2012-117, 2012. DOI: 10.2514/6.2012-117.
  • Z. Li, A. Banaeizadeh, S. Rezaeiravesh and F. Jaberi, “Advanced Modeling of High Speed Turbulent Reacting Flows,” AIAA Paper. 2012-116, 2012. DOI: 10.2514/6.2012-116.
  • T. Drozda, J. Quinlan, P. Pisciuneri and S. Yilmaz, “Progress toward affordable high fidelity combustion simulations for high-speed flows in complex geometries,” AIAA Paper. 2012-4264, 2012. DOI: 10.2514/6.2012-4264.
  • A. Irannejad, F. Jaberi, J. Komperda and F. Mashayek, “Large eddy simulation of supersonic turbulent combustion with FMDF,” AIAA Paper. 2014-1188, 2014. DOI: 10.2514/6.2014-1188.
  • A. G. Nouri, M. B. Nik, P. Givi, D. Livescu and S. B. Pope, “Self-contained filtered density function,” Phys. Rev. Fluids, vol. 2, no. 9, pp. 094603, 2017. DOI: 10.1103/PhysRevFluids.2.094603.
  • M. Carrara and P. DesJardin, “A filtered mass density function approach for modeling separated two-phase flows for les i: Mathematical formulation,” Int. J. Multiphase Flow, vol. 32, no. 3, pp. 365–384, 2006. DOI: 10.1016/j.ijmultiphaseflow.2005.11.003.
  • M. Carrara and P. DesJardin, “A filtered mass density function approach for modeling separated two-phase flows for les ii: Simulation of a droplet laden temporally developing mixing layer,” Int. J. Multiphase Flow, vol. 34, no. 8, pp. 748–766, 2008. DOI: 10.1016/j.ijmultiphaseflow.2008.02.003.
  • Z. Li, A. Banaeizadeh and F. Jaberi, “Two-phase filtered mass density function for LES of turbulent reacting flows,” J. Fluid Mech., vol. 760, pp. 243–277, 2014. DOI: 10.1017/jfm.2014.573.
  • A. Irannejad, A. Banaeizadeh and F. Jaberi, “Large eddy simulation of turbulent spray combustion,” Combust. Flame, vol. 162, no. 2, pp. 431–450, 2015. DOI: 10.1016/j.combustflame.2014.07.029.
  • C. Tong, “Measurements of conserved scalar filtered density function in a turbulent jet,” Phys. Fluids, vol. 13, no. 10, pp. 2923–2937, 2001. DOI: 10.1063/1.1402171.
  • M. Sheikhi, T. Drozda, P. Givi, F. Jaberi and S. Pope, “Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D),” P. Combust. Inst., vol. 30, no. 1, pp. 549–556, 2005. DOI: 10.1016/j.proci.2004.08.028.
  • V. Raman and H. Pitsch, “A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry,” P. Combust. Inst., vol. 31, no. 2, pp. 1711–1719, 2007. DOI: 10.1016/j.proci.2006.07.152.
  • S. James, J. Zhu and M. Anand, “Large eddy simulations of turbulent flames using the filtered density function model,” P. Combust. Inst., vol. 31, no. 2, pp. 1737–1745, 2007. DOI: 10.1016/j.proci.2006.07.160.
  • T. Drozda, M. Sheikhi, C. Madnia and P. Givi, “Developments in formulation and application of the filtered density function,” Flow Turbulence Combust., vol. 78, no. 1, pp. 35–67, 2006. DOI: 10.1007/s10494-006-9052-4.
  • M. Yaldizli, K. Mehravaran and F. Jaberi, “Large-eddy simulations of turbulent methane jet flames with filtered mass density function,” Int. J. Heat Mass Tran., vol. 53, no. 11–12, pp. 2551–2562, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.061.
  • S. Yilmaz, M. Nik, P. Givi and P. Strakey, “Scalar filtered density function for large eddy simulation of a bunsen burner,” J. Propul. Power, vol. 26, no. 1, pp. 84–93, 2010. DOI: 10.2514/1.44600.
  • M. Nik, S. Yilmaz, P. Givi, M. Sheikhi and S. Pope, “Simulation of Sandia Flame D using velocity-scalar filtered density function,” AIAA Paper, vol. 48, no. 7, pp. 1513–1522, 2010. DOI: 10.2514/1.J050154.
  • N. Ansari, P. Strakey, G. Goldin and P. Givi, “Filtered density function simulation of a realistic swirled combustor,” P. Combust. Inst., vol. 35, no. 2, pp. 1433–1442, 2015. DOI: 10.1016/j.proci.2014.05.042.
  • A. Banaeizadeh, A. Afshari, H. Schock and F. Jaberi, “Large-eddy simulations of turbulent flows in internal combustion engines,” Int. J. Heat Mass Tran., vol. 60, pp. 781–796, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.065.
  • N. Ansari, G. Goldin, M. Sheikhi and P. Givi, “Filtered density function simulator on unstructured meshes,” J. Comp. Phys., vol. 230, no. 19, pp. 7132–7150, 2011. DOI: 10.1016/j.jcp.2011.05.015.
  • N. Ansari, P. Pisciuneri, P. Strakey and P. Givi, “Scalar-filtered mass-density-function simulation of swirling reacting flows on unstructured grids,” AIAA Paper, vol. 50, no. 11, pp. 2476–2482, 2012. DOI: 10.2514/1.J051671.
  • S. Sammak, M. Brazell, P. Givi and D. Mavriplis, “A hybrid DG-Monte Carlo FDF simulator,” Comp. Fluids, vol. 140, pp. 158–166, 2016. DOI: 10.1016/j.compfluid.2016.09.003.
  • R. McDermott and S. B. Pope, “A particle formulation for treating differential diffusion in filtered density function methods,” J. Comp. Phys., vol. 226, no. 1, pp. 947–993, 2007. DOI: 10.1016/j.jcp.2007.05.006.
  • Y. Sun, Z. J. Wang and Y. Liu, “High-order multidomain spectral difference method for the Navier–Stokes equations on unstructured hexahedral grids,” Commun. Comput. Phys., vol. 2, pp. 310–333, 2007.
  • P. E. J. Vos, S. J. Sherwin and R. M. Kirby, “From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations,” J. Comp. Phys., vol. 229, no. 13, pp. 5161–5181, 2010. DOI: 10.1016/j.jcp.2010.03.031.
  • D. A. Kopriva, “A conservative staggered-grid Chebyshev multi domain method for compressible flows,” J. Comp. Phys., vol. 128, pp. 477–488, 1996.
  • D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Berlin: Springer Science & Business Media, 2009.
  • A. T. Patera, “A spectral element method for fluid dynamics—laminar flow in channel expansion,” J. Comp. Phys., vol. 54, no. 3, pp. 468–488, 1984. DOI: 10.1016/0021-9991(84)90128-1.
  • K. Z. Korczak and A. T. Patera, “An isoparametric spectral element method for solution of the Navier–Stokes equations in complex geometry,” J. Comp. Phys., vol. 62, no. 2, pp. 361–382, 1986. DOI: 10.1016/0021-9991(86)90134-8.
  • P. F. Fischer, L.-W. Ho, G. E. Karniadakis, E. M. Ronquist and A. T. Patera, “Recent advances in parallel spectral element simulation of unsteady incompressible flows,” Comput. Struct., vol. 30, no. 1–2, pp. 217–231, 1988. DOI: 10.1016/0045-7949(88)90228-3.
  • Y. Maday and A. T. Patera, “Spectral element methods for the incompressible Navier–Stokes equations,” in State-Of-the-Art Surveys on Computational Mechanics, the American Society of Mechanical Engineers, A. K. Noor and J. T. Oden, Eds. New York: American Society of Mechanical Engineers, 1989, pp. 71–143.
  • D. A. Kopriva, “A spectral multidomain method for the solution of hyperbolic systems,” Appl. Numer. Math., vol. 2, no. 3–5, pp. 221–241, 1986. DOI: 10.1016/0168-9274(86)90030-9.
  • D. A. Kopriva and J. H. Kolias, “A conservative staggered-grid Chebyshev multidomain method for compressible flows,” J. Comp. Phys., vol. 125, no. 1, pp. 244–261, 1996. DOI: 10.1006/jcph.1996.0091.
  • D. A. Kopriva, “A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations,” J. Comp. Phys., vol. 244, pp. 142–158, 1998.
  • G. B. Jacobs, D. A. Kopriva and F. Mashayek, “Validation study of a multidomain spectral code for simulation of turbulent flows,” AIAA Paper, vol. 43, no. 6, pp. 1256–1264, 2005. DOI: 10.2514/1.12065.
  • G. B. Jacobs, D. A. Kopriva and F. Mashayek, “A conservative isothermal wall boundary condition for the compressible Navier–Stokes equations,” J. Sci. Comput., vol. 30, no. 2, pp. 177–192, 2007. DOI: 10.1007/s10915-005-9040-1.
  • G. B. Jacobs, “Numerical simulation of two-phase turbulent compressible flows with a multidomain spectral method,” Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL, 2003.
  • K. Sengupta, G. Jacobs and F. Mashayek, “Large-eddy simulation of compressible flows using a spectral multi-domain method,” Int. J. Numer. Meth. Fluids, vol. 61, no. 3, pp. 311–340, 2009. DOI: 10.1002/fld.1959.
  • G. B. Jacobs, D. A. Kopriva and F. Mashayek, “A particle tracking algorithm for the multidomain staggered-grid spectral method,” AIAA Paper. 2001-0630, 2001. DOI: 10.2514/6.2001-630.
  • N. Ansari, G. Goldin, P. Pisciuneri, M. Nik, P. Strakey and P. Givi, “FDF simulation of swirling reacting flows on unstructured meshes,” AIAA Paper. 2011-109, 2011. DOI: 10.2514/6.2011-109.
  • J. Komperda, Z. Ghiasi, F. Mashayek, A. Irannejad and F. A. Jaberi, “Filtered mass density function for use in discontinuous spectral element method,” AIAA Paper. 2014-3471, 2014. DOI: 10.2514/6.2014-3471.
  • P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. New York, NY: Springer, 1992.
  • J. Komperda, Z. Ghiasi, D. Li, F. Mashayek, A. Irannejad and F. A. Jaberi, “Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme,” AIAA Paper. 2016-1938, 2016. DOI: 10.2514/6.2016-1938.
  • G. B. Jacobs, D. A. Kopriva and F. Mashayek, “Towards efficient tracking of inertial particles with high-order multidomain methods,” J. Comp. Appl. Math., vol. 206, no. 1, pp. 392–408, 2007. DOI: 10.1016/j.cam.2006.08.004.
  • G. B. Jacobs and J. S. Hesthaven, “High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids,” J. Comp. Phys., vol. 214, no. 1, pp. 96–121, 2006. DOI: 10.1016/j.jcp.2005.09.008.
  • J.-P. Suarez, G. B. Jacobs and W.-S. Don, “A high-order dirac-delta regularization with optimal scaling in the spectral solution of one-dimensional singular hyperbolic conservation laws,” SIAM J. Sci. Comput., vol. 36, no. 4, pp. A1831–A1849, 2014. DOI: 10.1137/130939341.
  • J.-P. Suarez and G. B. Jacobs, “Regularization of singularities in the weighted summation of dirac-delta functions for the spectral solution of hyperbolic conservation laws,” J. Sci. Comput., vol. 72, no. 3, pp. 1080–1092, 2017. DOI: 10.1007/s10915-017-0389-8.
  • G. I. Taylor and A. E. Green, “Mechanism of the production of small eddies from large ones,” Proc. R. Soc. Lon. A, vol. 158, pp. 499–521, 1937. DOI: 10.1098/rspa.1937.0036.
  • S. A. Orszag, “Numerical simulation of the Taylor–Green vortex,” in Computing Methods in Applied Sciences and Engineering Part 2, Berlin: Springer, 1974, pp. 50–64.
  • M. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf and U. Frisch, “Small scale structure of the Taylor–Green vortex,” J. Fluid Mech., vol. 130, no. 1, pp. 411–452, 1983. DOI: 10.1017/S0022112083001159.
  • M. Brachet, “Direct simulation of three-dimensional turbulence in the Taylor–Green vortex,” Fluid Dyn. Res., vol. 8, no. 1–4, pp. 1–8, 1991. DOI: 10.1016/0169-5983(91)90026-F.
  • D. Drikakis, C. Fureby, F. F. Grinstein and D. Youngs, “Simulation of transition and turbulence decay in the Taylor–Green vortex,” J. Turbul., vol. 8, pp. N20, 2007. DOI: 10.1080/14685240701250289.
  • Z. Ghiasi, D. Li, J. Komperda and F. Mashayek, “Near-wall resolution requirement for direct numerical simulation of turbulent flow using multidomain chebyshev grid,” Int. J. Heat Mass Tran., vol. 126, pp. 746–760, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.114.
  • Z. Ghiasi, J. Komperda, D. Li, A. Peyvan, D. Nicholls and F. Mashayek, “Modal explicit filtering for large eddy simulation in discontinuous spectral element method,” J. Comp. Phys. X, vol. 3, pp. 100024, 2019. DOI: 10.1016/j.jcpx.2019.100024.
  • D. Li, J. Komperda, Z. Ghiasi, A. Peyvan and F. Mashayek, “Compressibility effects on the transition to turbulence in a spatially developing plane free shear layer,” Theor. Comput. Fluid Dyn., vol. 33, no. 6, pp. 577–602, 2019. DOI: 10.1007/s00162-019-00507-w.
  • G. J. Gassner and A. D. Beck, “On the accuracy of high-order discretizations for underresolved turbulence simulations,” Theor. Comput. Fluid Dyn., vol. 27, no. 3–4, pp. 221–237, 2013. DOI: 10.1007/s00162-011-0253-7.
  • G. Haller, “An objective definition of a vortex,” J. Fluid Mech., vol. 525, pp. 1–26, 2005. DOI: 10.1017/S0022112004002526.
  • M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998. DOI: 10.1145/272991.272995.
  • S. R. Turns, An Introduction to Combustion: Concepts and Applications, New York: McGraw-Hill Inc., 1996.
  • R. W. Bilger, “Turbulent flows with nonpremixed reactants,” in Turbulent Reacting Flows, Volume 44 of Topics in Applied Physics, P. A. Libby and F. A. Williams, Eds. Heidelberg: Springer-Verlag, 1980, pp. 65–113.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. Philadelphia, PA, USA: R. T. Edwards, Inc., 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.