Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 3
245
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study on heat transfer of Stirling engine heater tube with rectangular micro-ribs

, , , &
Pages 141-159 | Received 08 Apr 2020, Accepted 28 May 2020, Published online: 22 Jun 2020

References

  • Urieli and D. Berchowitz, Stirling Cycle Engine Analysis. Bristol: Adam Hilger, 1983.
  • A. Guzzetti, CFD Modeling of a Beta-Type Stirling Engine. Milan: Polytecnico Di Milano, 2013.
  • Z. Longqing and L. Hongshuo, Deng Shizhou. Stirling Engine [M]. Changsha: Hunan University Press, 1985, pp. 7–21.
  • N. Hirao and M. Komura, “Improvement in specific power of Stirling engine by using a new heat exchanger,” J. Jpn. Inst. Energy, vol. 88, no. 12, pp. 1095–1100, 2009. DOI: 10.3775/jie.88.1095.
  • W. L. Chen, K. L. Wong, and Y. F. Chang, “A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine,” Int. J. Heat Mass Transf., vol. 75, pp. 145–155, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.055.
  • F. Xin et al., “Study of heat transfer in oscillatory flow for a Stirling engine heating tube inserted with spiral spring,” Appl. Therm. Eng., vol. 143, pp. 182–192, 2018. DOI: 10.1016/j.applthermaleng.2018.07.071.
  • R. Dyson, S. Wilson, and R. Tew. “Review of computational Stirling analysis methods”, 2nd International Energy Conversion Engineering Conference, vol. 1, pp. 114–168, 2004. DOI: 10.2514/6.2004-5582.
  • K. M. Bataineh, “Numerical thermodynamic model of alpha-type Stirling engine,” Case Stud. Therm. Eng., vol. 12, pp. 104–116, 2018. DOI: 10.1016/j.csite.2018.03.010.
  • A. Chmielewski, R. Guminski, and J. Maczak, “Selected properties of the adiabatic model of the Stirling engine combined with the model of the piston-crankshaft system,” International Conference on Methods & Models in Automation & Robotics, Poland, IEEE, 2016. DOI: 10.1109/MMAR.2014.6957429.
  • D. Dai et al., “Performance analysis and multi-objective optimization of a Stirling engine based on MOPSOCD,” Int. J. Therm. Sci., vol. 124, pp. 399–406, 2018. DOI: 10.1016/j.ijthermalsci.2017.10.030.
  • T. Finkelstein, “Thermodynamic analysis of Stirling engines,” J. Spacecraft Rockets, vol. 4, no. 9, pp. 1184–1189, 1967. DOI: 10.2514/3.29049.
  • S. Zhu et al., “Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system,” Appl. Energy, vol. 226, pp. 522–533, 2018. DOI: 10.1016/j.apenergy.2018.05.122.
  • Z. M. Farid et al., “Thermodynamic performance prediction of rhombic-drive beta-configuration Stirling engine,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 469, no. 1, pp. 012048, 2019. DOI: 10.1088/1757-899X/469/1/012048.
  • C. Çınar et al., “Manufacturing and testing of an α-type Stirling engine,” Appl. Therm. Eng., vol. 130, pp. 1373–1379, 2018. DOI: 10.1016/j.applthermaleng.2017.11.132.
  • M. Hooshang et al., “Enhancing and multi-objective optimising of the performance of Stirling engine using third-order thermodynamic analysis,” Int. J. Ambient Energy, vol. 39, no. 4, pp. 382–391, 2018. DOI: 10.1080/01430750.2017.1303638.
  • R. Gheith et al., “Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization,” Energy Convers. Manage., vol. 105, pp. 285–293, 2015. DOI: 10.1016/j.enconman.2015.07.063.
  • P. K. Yadav, S. Qiu, and K. Yanaga, “Design and development of test rigs for experimental investigation of flow loss and heat transfer in a Stirling engine heater head,” 2018 International Energy Conversion Engineering Conference, Xi'An, China, 2018. DOI: 10.2514/6.2018-4500.
  • P. Liu et al., “An experimental and numerical study on the laminar heat transfer and flow characteristics of a circular tube fitted with multiple conical strips inserts,” Int. J. Heat Mass Transf., vol. 117, pp. 691–709, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.035.
  • A. Verma, M. Kumar, and A. K. Patil, “Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts,” Heat Mass Transf., vol. 54, no. 10, pp. 3137–3150, 2018. DOI: 10.1007/s00231-018-2347-x.
  • M. A. Akhavan-Behabadi, M. R. Salimpour, and V. A. Pazouki, “Pressure drop increase of forced convective condensation inside horizontal coiled wire inserted tubes,” Int. Commun. Heat Mass Transf., vol. 35, no. 9, pp. 1220–1226, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.06.004.
  • H. Hachem et al., “Technological challenges and optimization efforts of the Stirling machine: A review,” Energy Convers. Manage., vol. 171, pp. 1365–1387, 2018. DOI: 10.1016/j.enconman.2018.06.042.
  • G. Xiao et al., “Design optimization with computational fluid dynamic analysis of β-type Stirling engine,” Appl. Therm. Eng., vol. 113, pp. 87–102, 2017. DOI: 10.1016/j.applthermaleng.2016.10.063.
  • Z. Tianxue, Study on Oscillation Flow and Heat Transfer in Stirling Machine Tubes. Zhejiang, China: Zhejiang University, 2014.
  • C. Conghui, Stirling Cycle Analysis and Heater Characteristics Research. Zhejiang, China: Zhejiang University, 2014.
  • M. A. Mohammadi and A. Jafarian, “CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine,” Energy, vol. 153, pp. 287–300, 2018. DOI: 10.1016/j.energy.2018.04.017.
  • C. Chi et al., “CFD simulation and investigation on the operating mechanism of a beta-type free piston Stirling engine,” Appl. Therm. Eng., vol. 166, pp. 114751, 2020. DOI: 10.1016/j.applthermaleng.2019.114751.
  • K. Yanaga et al., “Experimental study of Stirling engine regenerator efficiency and pressure loss,” 2018 International Energy Conversion Engineering Conference, Xi'An, China, 2018. DOI: 10.2514/6.2018-4501.
  • S. Dong et al., “The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine,” Energy, vol. 181, pp. 378–386, 2019. DOI: 10.1016/j.energy.2019.05.142.
  • H. Yaling et al., “Research progress on non-uniform radiant energy flow characteristics and solutions of concentrating solar thermal power generation systems,” Chin. Sci. Bull., vol. 61, no. 30, pp. 3208–3237, 2016. DOI: 10.1360/N972016-00604.
  • M. Kuosa et al., “Oscillating flow in a Stirling engine heat exchanger,” Appl. Therm. Eng., vol. 45–46, pp. 15–23, 2012. DOI: 10.1016/j.applthermaleng.2012.03.023.
  • H. Jiarong, Thermal Performance Modeling and Simulation Analysis of Trough Solar Thermal Power Generation System. Harbin, China: Harbin University of Technology, 2018.
  • Y. Hong et al., “Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications,” Energy Convers. Manage., vol. 185, pp. 271–290, 2019. DOI: 10.1016/j.enconman.2019.01.074.
  • W. Xiaomin, W. Xiaoliang, and W. Weicheng, “Experimental study on flow evaporation heat transfer characteristics in horizontal micro-ribbed tube,” CIESC J., vol. 54, no. 9, pp. 28–32, 2003. DOI: CNKI:SUN:HGSZ.0.2003-09-004.
  • S. Amiri, R. Taher, and L. Mongeau, “Quantitative visualization of temperature field and measurement of local heat transfer coefficient over heat exchanger elements in sinusoidal oscillating flow,” Exp. Therm. Fluid Sci., vol. 85, pp. 22–36, 2017. DOI: 10.1016/j.expthermflusci.2017.02.008.
  • C. Conghui et al., “Experimental study on heat transfer characteristics of oscillating flow in Stirling engine tube heater,” Energy Eng., vol. 71, pp. 1–7, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.010.
  • M. B. Ibrahim, Z. Zhang, and S. Kembhavi, “A model of 90 degree turn oscillatory flow,” 1st International Energy Conversion Engineering Conference, Portsmouth, Virginia, 2003, p. 5935.
  • F. Xue and M. E. Taslim, “Flow and heat transfer in a rib-roughened trailing-edge cooling channel with crossover impingement,” Int. J. Gas Turbine Propul. Power Syst., vol. 141, no. 5, pp. 051003.1–051003.9. DOI:10.1115/1.4041818.
  • F. Williams, “Heat transfer from surfaces roughened by ribs,” in Augmentation of Convective Heat Transfer, A. E. Bergles and R. L. Webb, Eds. New York: ASME, 1970, pp. 36–43. DOI: 10.1016/0017-9310(94)90094-9.
  • M. K. Jensen and A. Vlakancic, “Technical note experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes,” Int. J. Heat Mass Transf., vol. 42, no. 7, pp. 1343–1351, 1999. DOI: 10.1016/S0017-9310(98)00243-9.
  • J. Liu, L. Dai, and S. Li, “Numerical simulation of microcosmic flow in porous media,” J. Liaoning Tech. Univers., vol. 24, no. 5, pp. 680–682, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.