Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 4
391
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis on flow pattern and heat transfer characteristics of flow boiling in the mini-channels

, , , , &
Pages 221-247 | Received 15 May 2020, Accepted 19 Jun 2020, Published online: 13 Jul 2020

References

  • S. G. Kandlikar and W. J. Grande, “Evolution of microchannel flow passages–thermohydraulic performance and fabrication technology,” Heat Transf. Eng., vol. 24, no. 1, pp. 3–17, 2003. DOI: 10.1080/01457630304040.
  • P. A. Kew and K. Cornwell, “Correlations for the prediction of boiling heat transfer in small-diameter channels,” Appl. Therm. Eng., vol. 17, no. 8–10, pp. 705–715, 1997. DOI: 10.1016/S1359-4311(96)00071-3.
  • B. Sumith, F. Kaminaga, and K. Matsumura, “Saturated flow boiling of water in a vertical small diameter tube,” Exp. Therm. Fluid Sci., vol. 27, no. 7, pp. 789–801, 2003. DOI: 10.1016/S0894-1777(02)00317-5.
  • E. Sobierska, R. Kulenovic, and R. Mertz, “Heat transfer mechanism and flow pattern during flow boiling of water in a vertical narrow channel—experimental results,” Int. J. Therm. Sci., vol. 46, no. 11, pp. 1172–1181, 2007. DOI: 10.1016/j.ijthermalsci.2007.06.011.
  • D. Chao, J. Li, and X. Mingchen, “Experimental study on flow boiling characteristics of pure refrigerant (r134a) and zeotropic mixture (r407c) in a rectangular micro-channel,” Int. J. Heat Mass Transf., vol. 104, pp. 351–361, 2017.
  • L. Yin and L. Jia, “Confined bubble growth and heat transfer characteristics during flow boiling in micro-channel,” Int. J. Heat Mass Transf., vol. 98, pp. 114–123, 2016.
  • A. A. Arcanjo, C. B. Tibiricá, and G. Ribatski, “Evaluation of flow patterns and elongated bubble characteristics during the flow boiling of halocarbon refrigerants in a micro-scale channel,” Exp. Therm. Fluid Sci., vol. 34, no. 6, pp. 766–775, 2010. DOI: 10.1016/j.expthermflusci.2010.01.006.
  • S. Saisorn, J. Kaew-On, and S. Wongwises, “Flow pattern and heat transfer characteristics of R-134a refrigerant during flow boiling in a horizontal circular mini-channel,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 4023–4038, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.022.
  • C. Martin-Callizo, B. R. Palm, W. Owhaib, and R. Ali, “Flow boiling visualization of R-134a in a vertical channel of small diameter,” J. Heat Transf., vol. 132, pp. 031001, 2010.
  • L. Chen, Y. S. Tian, and T. G. Karayiannis, “The effect of tube diameter on vertical two-phase flow regimes in small tubes,” Int. J. Heat Mass Transf., vol. 49, no. 21–22, pp. 4220–4230, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.03.025.
  • G. M. Lazarek and S. H. Black, “Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113,” Int. J. Heat Mass Transf., vol. 25, no. 7, pp. 945–960, 1982. DOI: 10.1016/0017-9310(82)90070-9.
  • W. Owhaib, C. Martín-Callizo, and B. Palm, “Evaporative heat transfer in vertical circular microchannels,” Appl. Therm. Eng., vol. 24, no. 8–9, pp. 1241–1253, 2004. DOI: 10.1016/j.applthermaleng.2003.12.030.
  • V. V. Kuznetsov, A. S. Shamirzaev, I. A. Kozulin, and S. P. Kozlov, “Correlation of the flow pattern and flow boiling heat transfer in microchannels,” Heat Transf. Eng., vol. 34, no. 2–3, pp. 235–245, 2013. DOI: 10.1080/01457632.2013.703564.
  • C. Martí, N. Callizo, and P. W. Owhaiba, “Subcooled flow boiling of R-134a in vertical channels of small diameter,” Int. J. Multiphase Flow, vol. 33, no. 8, pp. 822–832, 2007. DOI: 10.1016/j.ijmultiphaseflow.2007.02.002.
  • T. N. Tran, M. W. Wambaganse, M. C. Chyu, et al., “A correlation for nudeate flow boiling in, small channels,” // R. K. Shah Compact Heat Exchanger for the Process Industries. New York: Begell House, 1997, pp. 353–363.
  • A. S. Pamitran, K. Choi, J. Oh, and H. Oh, “Forced convective boiling heat transfer of R-410A in horizontal minichannels,” Int. J. Refrig., vol. 30, no. 1, pp. 155–165, 2007. DOI: 10.1016/j.ijrefrig.2006.06.005.
  • S. S. Bertsch, E. A. Groll, and S. V. Garimella, “Refrigerant flow boiling heat transfer in parallel microchannels as a function of local vapor quality,” Int. J. Heat Mass Transf., vol. 51, no. 19–20, pp. 4775–4787, 2008. [J]. DOI: 10.1016/j.ijheatmasstransfer.2008.01.026.
  • M. Cortina Díaz and J. Schmidt, “Experimental investigation of transient boiling heat transfer in microchannels,” Int. J. Heat Fluid Flow, vol. 28, no. 1, pp. 95–102, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.05.008.
  • C. L. Ong and J. R. Thome, “Macro-to-microchannel transition in two-phase flow: Part 2 – Flow boiling heat transfer and critical heat flux,” Exp. Therm. Fluid Sci., vol. 35, no. 6, pp. 873–886, 2011. DOI: 10.1016/j.expthermflusci.2010.12.003.
  • X. Huo, L. Chen, Y. S. Tian, et al., “Flow boiling and flow regimes in small diameter tubes,” Appl. Therm. Eng., vol. 24, no. 8–9, pp. 1225–1239, 2004. DOI: 10.1016/j.applthermaleng.2003.11.027.
  • D. Shiferaw, T. G. Karayiannis, and D. B. R. Kenning, “Flow boiling in a 1.1 mm tube with R134a: experimental results and comparison with model,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 331–341, 2009. DOI: 10.1016/j.ijthermalsci.2008.02.009.
  • T. S. Ravigururajan, “Impact of channel geometry on two-phase flow heat transfer characteristics of refrigerants in microchannel heat exchangers,” J Heat Transf., vol. 120, no. 2, pp. 485–491, 1998. DOI: 10.1115/1.2824274.
  • Zhuan R, Wang W. “Flow pattern of boiling in micro-channel by numerical simulation,” Int. J. Heat Mass Transf., vol. 55, no. 5–6, pp. 1741–1753, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.11.029
  • J. Yu, H. Ma, and Y. Jiang, “A numerical study of heat transfer and pressure drop of hydrocarbon mixture refrigerant during boiling in vertical rectangular minichannel,” Appl. Therm. Eng. Des. Process. Equip. Econ., vol. 112, pp. 1343–1352, 2017. DOI: 10.1016/j.applthermaleng.2016.10.151.
  • H. Ma, W. Cai, J. Chen, Y. Yao, and Y. Jiang, “Numerical investigation on saturated boiling and heat transfer correlations in a vertical rectangular minichannel,” Int. J. Therm. Sci., vol. 102, pp. 285–299, 2016. DOI: 10.1016/j.ijthermalsci.2015.12.003.
  • M. Magnini, B. Pulvirenti, and J. R. Thome, “Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel,” Int. J. Heat Mass Transf., vol. 59, pp. 451–471, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.010.
  • X. Li, W. Wei, R. Wang, and Y. Shi, “Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen,” Internal J. Heat Mass Transf., vol. 52, no. 5–6, pp. 1510–1516, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.08.012.
  • J-h Wei, L-m Pan, D-q Chen, H. Zhang, J-j Xu, and Y-p Huang, “Numerical simulation of bubble behaviors in subcooled flow boiling under swing motion,” Nucl. Eng. Des., vol. 241, no. 8, pp. 2898–2908, 2011. DOI: 10.1016/j.nucengdes.2011.05.008.
  • C. Kunkelmann and P. Stephan, “CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM,” Numer. Heat Transf. A Appl., vol. 56, no. 8, pp. 631–646, 2009. DOI: 10.1080/10407780903423908.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • H. L. Wen, “A pressure iteration scheme for two-phase flow modeling,” [M]//Computational Methods for Two-Phase Flow and Particle Transport: (with CD-ROM), 1980.
  • S. C. K. D. Schepper, G. J. Heynderickx, and G. B. Marin, “Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker,” Comp. Chem. Eng., vol. 33, no. 1, pp. 122–132, 2009. DOI: 10.1016/j.compchemeng.2008.07.013.
  • M. Bahreini, A. Ramiar, and A. A. Ranjbar, “Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient,” Nucl. Eng. Des., vol. 293, pp. 238–248, 2015.
  • S. Lin, P. A. Kew, and K. Cornwell, “Two-phase heat transfer to a refrigerant in a 1 mm diameter tube,” Int. J. Refrigerat., vol. 24, no. 1, pp. 51–56, 2001. DOI: 10.1016/S0140-7007(00)00057-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.