Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 5
190
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An implicit implementation of the characteristic boundary condition in a fully coupled pressure-based flow solver

, , &
Pages 330-347 | Received 19 May 2020, Accepted 19 Jun 2020, Published online: 09 Jul 2020

References

  • S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transf., vol. 15, no. 10, pp. 1787–1806, 1972. DOI: 10.1016/0017-9310(72)90054-3.
  • J. P. Van Doormaal and G. D. Raithby, “Enhancement of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat. Tr. B-Fund., vol. 7, no. 2, pp. 147–163, 1984. DOI: 10.1080/01495728408961817.
  • S. Acharya and F. Moukalled, “Improvements to incompressible flow calculation on a non-staggered curvilinear grid,” Numer. Heat. Tr. B-Fund., vol. 15, no. 2, pp. 131–152, 1989. DOI: 10.1080/10407798908944897.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: Hemisphere Publishing Corporation, 1980.
  • A. Ashrafizadeh, B. Alinia and P. Mayeli, “A new co-located pressure-based discretization method for the numerical solution of incompressible Navier-Stokes equations,” Numer. Heat. Tr. B-Fund., vol. 67, no. 6, pp. 563–589, 2015. DOI: 10.1080/10407790.2014.992094.
  • A. Miettinen and T. Siikonen, “Application of pressure-and density-based methods for different flow speeds,” Int. J. Numer. Meth. Fluids, vol. 79, no. 5, pp. 243–267, 2015. DOI: 10.1002/fld.4051.
  • F. H. Harlow and A. A. Amsden, “A numerical fluid dynamics calculation method for all flow speeds,” J. Comput. Phys., vol. 8, no. 2, pp. 197–213, 1971. DOI: 10.1016/0021-9991(71)90002-7.
  • J. P. Van Doormaal, G. D. Raithby, and B. H. McDonald, “The segregated approach to predicting viscous compressible fluid flows,” In ASME 1986 International Gas Turbine Conference and Exhibit, V001T01A084. American Society of Mechanical Engineers, 1986. DOI: 10.1115/86-GT-196.
  • K. H. Chen and R. H. Pletcher, “Primitive variable, strongly implicit calculation procedure for viscous flows at all speeds,” AIAA J., vol. 29, no. 8, pp. 1241–1249, 1991. DOI: 10.2514/3.10728.
  • S. Acharya, B. R. Baliga, K. Karki, J. Y. Murthy, C. Prakash and S. P. Vanka, “Pressure-based finite-volume methods in computational fluid dynamics,” J. Heat Transf., vol. 129, no. 4, pp. 407–424, 2007. DOI: 10.1115/1.2716419.
  • F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and MATLAB®. Basel, Switzerland: Springer International Publishing, 2015.
  • F. Moukalled and M. Darwish, “A high-resolution pressure-based algorithm for fluid flow at all speeds,” J. Comput. Phys., vol. 168, no. 1, pp. 101–133, 2001. DOI: 10.1006/jcph.2000.6683.
  • F. Moukalled and M. Darwish, “A unified formulation of the segregated class of algorithms for fluid flow at all speeds,” Numer. Heat. Tr. B-Fund., vol. 37, no. 1, pp. 103–139, 2000. DOI: 10.1080/104077900275576.
  • A. Cubero and N. Fueyo, “Preconditioning based on a partially implicit implementation of momentum interpolation for coupled solvers,” Numer. Heat. Tr. B-Fund., vol. 53, no. 6, pp. 510–535, 2008. DOI: 10.1080/10407790802035281.
  • M. Darwish, I. Sraj and F. Moukalled, “A coupled incompressible flow solver on structured grids,” Numer. Heat. Tr. B-Fund., vol. 52, no. 4, pp. 353–371, 2007. DOI: 10.1080/10407790701372785.
  • M. Darwish, I. Sraj and F. Moukalled, “A coupled finite volume solver for the solution of incompressible flows on unstructured grids,” J. Comput. Phys., vol. 228, no. 1, pp. 180–201, 2009. DOI: 10.1016/j.jcp.2008.08.027.
  • Z. J. Chen and A. J. Przekwas, “A coupled pressure-based computational method for incompressible/compressible flows,” J. Comput. Phys., vol. 229, no. 24, pp. 9150–9165, 2010. DOI: 10.1016/j.jcp.2010.08.029.
  • C. N. Xiao, F. Denner and B. G. van Wachem, “Fully coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries,” J. Comput. Phys., vol. 346, pp. 91–130, 2017. DOI: 10.1016/j.jcp.2017.06.009.
  • R. M. Beam and R. F. Warming, “An implicit factored scheme for the compressible Navier-Stokes equations,” AIAA J., vol. 16, no. 4, pp. 393–402, 1978. DOI: 10.2514/3.60901.
  • R. W. MacCormack, “A numerical method for solving the equations of compressible viscous flow,” AIAA J., vol. 20, no. 9, pp. 1275–1281, 1982. DOI: 10.2514/3.51188.
  • E. Turkel, R. Radespiel and N. Kroll, “Assessment of preconditioning methods for multidimensional aerodynamics,” Computers Fluids, vol. 26, no. 6, pp. 613–634, 1997. DOI: 10.1016/S0045-7930(97)00013-3.
  • T. H. Pulliam, Characteristic boundary conditions for the Euler equations. 1981.
  • J. R. Carlson, Inflow/outflow boundary conditions with application to FUN3D. 2011.
  • A. Jameson and D. Mavriplis, “Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh,” AIAA J., vol. 24, no. 4, pp. 611–618, 1986. DOI: 10.2514/3.9315.
  • S. Mathur and J. Murthy, “All speed flows on unstructured meshes using a pressure correction approach,” In 14th Computational Fluid Dynamics Conference, 1999. p. 3365. DOI: 10.2514/6.1999-3365.
  • F. Moukalled, L. Mangani and M. Darwish, “The characteristic boundary condition in pressure-based methods,” Numer. Heat. Tr. B-Fund., vol. 76, no. 2, pp. 43–59, 2019. DOI: 10.1080/10407790.2019.1644942.
  • F. Moukalled, A. Abdel Aziz and M. Darwish, “Performance comparison of the NWF and DC methods for implementing high-resolution schemes in a fully coupled incompressible flow solver,” Appl. Math. Comput., vol. 217, no. 11, pp. 5041–5054, 2011. DOI: 10.1016/j.amc.2010.07.052.
  • M. Darwish and F. Moukalled, “A fully coupled Navier-Stokes solver for fluid flow at all speeds,” Numer. Heat. Tr. B-Fund., vol. 65, no. 5, pp. 410–444, 2014. DOI: 10.1080/10407790.2013.869102.
  • M. Darwish, A. Abdel Aziz and F. Moukalled, “A coupled pressure-based finite volume solver for incompressible two-phase flow,” Numer. Heat. Tr. B-Fund., vol. 67, no. 1, pp. 47–74, 2015. DOI: 10.1080/10407790.2014.949500.
  • F. Moukalled, L. Mangani and M. Darwish, “Implementation of boundary conditions in the finite volume pressure-based method-part I: segregated solvers,” Num. Heat Transf. Part B, vol. 69, no. 6, pp. 534–562, 2016. DOI: 10.1080/10407790.2016.1138748.
  • L. Mangani, M. Darwish and F. Moukalled, “An openFOAM pressure-based coupled CFD solver for turbulent and compressible flows in turbomachinary applications,” Num. Heat Transf. Part B, vol. 69, no. 5, pp. 413–431, 2016. DOI: 10.1080/10407790.2015.1125212.
  • M. Darwish, W. Geahchan and F. Moukalled, “A fully implicit method for coupling multi-block meshes with non-matching interface grids,” Numer. Heat. Tr. B-Fund., vol. 71, no. 2, pp. 109–132, 2017. DOI: 10.1080/10407790.2016.1265299.
  • L. Mangani, M. Buchmayr, M. Darwish and F. Moukalled, “A fully coupled openFOAM solver for transient incompressible turbulent flows in ALE formulation,” Numer. Heat. Tr. B-Fund., vol. 71, no. 4, pp. 313–326, 2017. DOI: 10.1080/10407790.2017.1293969.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA J., vol. 21, no. 11, pp. 1525–1532, 1983. DOI: 10.2514/3.8284.
  • NASA Langley Turbulence Modeling Resource website. http://turbmodels.larc.nasa.gov.
  • I. Demirdžić, Ž. Lilek and M. Perić, “A collocated finite volume method for predicting flows at all speeds,” Int. J. Numer. Meth. Fluids, vol. 16, no. 12, pp. 1029–1050, 1993. DOI: 10.1002/fld.1650161202.
  • A. Nouri-Borujerdi and A. S. Ghazani, “A pressure-based algorithm for internal compressible turbulent flows through a geometrical singularity,” Numer. Heat. Tr. B-Fund., vol. 75, no. 2, pp. 127–117, 2019. DOI: 10.1080/10407790.2019.1612665.
  • I. Sezai, “Implementation of boundary conditions in pressure-based finite volume methods on unstructured grids,” Numer. Heat. Tr. B-Fund., vol. 72, no. 1, pp. 82–107, 2017. DOI: 10.1080/10407790.2017.1338077.
  • H. Tan, “Applying the free-slip boundary condition with an adaptive cartesian cut-cell method for complex geometries,” Numer. Heat. Tr. B-Fund., vol. 74, no. 4, pp. 661–684, 2018. DOI: 10.1080/10407790.2018.1562770.
  • K. R. Laflin, et al., “Data summary from second aiaa computational fluid dynamics drag prediction workshop,” J. Aircraft, vol. 42, no. 5, pp. 1165–1178, 2005. DOI: 10.2514/1.10771.
  • T. Barth and D. Jespersen, “The design and application of upwind schemes on unstructured meshes,” In 27th Aerospace Sciences Meeting, 1989. p. 366. DOI: 10.2514/6.1989-366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.