Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 6
158
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Thermal anisotropy in binary alloy solidification: An equivalent isotropic model

, , &
Pages 385-411 | Received 06 Feb 2020, Accepted 23 Jun 2020, Published online: 07 Jul 2020

References

  • P. J. Prescott and F. P. Incropera , “Convection heat and mass transfer in alloy solidification,” Adv. Heat Transf. , vol. 28, pp. 231–338, 1996.
  • M. C. Flemings , Solidification Processing . New York: McGraw-Hill, 1974.
  • L. Nastac , et al. , CFD Modeling and Simulation in Materials Processing . Berlin: Springer, 2016.
  • M. Rappaz , M. Bellet and M. Deville , Numerical Modeling in Materials Science and Engineering . Berlin: Springer Science and Business Media, 2010.
  • W. D. Callister and D. G. Rethwisch , Materials Science and Engineering . New York: John Wiley & Sons, 2011, pp. 344–348.
  • W. D. Bennon and F. P. Incropera , “A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation,” Int. J. Heat Mass Transf. , vol. 30, no. 10, pp. 2161–2170, 1987. DOI: 10.1016/0017-9310(87)90094-9.
  • W. D. Bennon and F. P. Incropera , “A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-II. Application to solidification in a rectangular cavity,” Int. J. Heat Mass Transf. , vol. 30, no. 10, pp. 2171–2187, 1987. DOI: 10.1016/0017-9310(87)90095-0.
  • Y. Chen , Y. T. Im and J. Lee , “Finite elements simulation of solidification with momentum, heat and species transport,” J. Mater. Process. Technol. , vol. 48, no. 1-4, pp. 571–579, 1995. DOI: 10.1016/0924-0136(94)01696-X.
  • N. Zabaras and D. Samanta , “A stabilized volume‐averaging finite element method for flow in porous media and binary alloy solidification processes,” Int. J. Numer. Methods Eng. , vol. 60, no. 6, pp. 1103–1138, 2004. DOI: 10.1002/nme.998.
  • D. Samanta and N. Zabaras , “Modelling convection in solidification processes using stabilized finite element techniques,” Int. J. Numer. Methods Engng , vol. 64, no. 13, pp. 1769–1799, 2005. DOI: 10.1002/nme.1423.
  • D. Samanta and N. Zabaras , “A coupled thermomechanical, thermal transport and segregation analysis of the solidification of aluminum alloys on molds of uneven topographies,” Mater. Sci. Eng. A , vol. 408, no. 1-2, pp. 211–226, 2005. DOI: 10.1016/j.msea.2005.08.030.
  • D. Samanta and N. Zabaras , “Numerical study of macrosegregation in aluminum alloys solidifying on uneven surfaces,” Int. J. Heat Mass Transf. , vol. 48, no. 21-22, pp. 4541–4556, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.06.008.
  • C. R. Swaminathan and V. R. Voller , “A general enthalpy method for modeling solidification processes,” MTB , vol. 23, no. 5, pp. 651–664, 1992. DOI: 10.1007/BF02649725.
  • V. R. Voller and C. Prakash , “A fixed grid numerical modeling methodology for convection diffusion mushy region phase-change problem,” Int. J. Heat Mass Transf. , vol. 30, no. 8, pp. 1709–1719, 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • A. D. Brent , V. R. Voller and K. T. J. Reid , “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf. Part A Appl. , vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • C. Prakash and V. R. Voller , “On the numerical solution of continuum mixture model equations describing binary solid-liquid phase change,”, Numer. Heat Transf. Part B Fundamentals , vol. 15, no. 2, pp. 171–189, 1989. DOI: 10.1080/10407798908944899.
  • S. Chakroborty and P. Dutta , “A generalized formulation for evaluation of latent heat functions in enthalpy-based macroscopic models for convection-diffusion phase change processes,” Metallurgical and Materials Transactions B , vol. 32, no. 3, pp. 562–564, 2001. DOI: 10.1007/s11663-001-0042-6.
  • P. R. Chakraborty and P. Dutta , “A generalized enthalpy update scheme for solidification of a binary alloy with solid phase movement,” Metall. Mater. Trans. B , vol. 42, no. 6, pp. 1075–1079, 2011. DOI: 10.1007/s11663-011-9585-3.
  • S. Chakraborty and P. Dutta , “The effect of solutal undercooling on double-diffusive convection and macrosegregation during binary alloy solidification: A numerical investigation,” Int. J. Numer. Methods Fluids , vol. 38, no. 9, pp. 895–917, 2002. DOI: 10.1002/fld.254.
  • S. Chakraborty and P. Dutta , “Effects of solutal undercooling on three-dimensional double-diffusive convection and macrosegregation during solidification of a binary alloy,” Numer. Heat Transf. Part A Appl. , vol. 48, no. 3, pp. 261–281, 2005. pp. DOI: 10.1080/10407780590957044.
  • N. Chakraborty , D. Chatterjee and S. Chakraborty , “Modeling of turbulent transport in laser surface alloying,” Numer. Heat Transf. Part A Appl. , vol. 46, no. 10, pp. 1009–1032, 2004. DOI: 10.1080/10407780490517629.
  • N. Chakraborty , S. Chakraborty and P. Dutta , “Three-dimensional modeling of turbulent weld pool convection in GTAW processes,” Numer. Heat Transf. Part A Appl. , vol. 45, no. 4, pp. 391–413, 2004. DOI: 10.1080/10407780490250364.
  • A. Kumar , P. Dutta , S. Sundarraj and M. J. Walker , “Remelting of solid and its effect on macrosegregation during solidification,” Numer. Heat Transf. Part A Appl. , vol. 51, no. 1, pp. 59–83, 2007. DOI: 10.1080/10407780600710391.
  • A. Kumar and P. Dutta , “Numerical studies on columnar-to-equiaxed transition in directional solidification of binary alloys,” J. Mater. Sci. , vol. 44, no. 15, pp. 3952–3961, 2009. DOI: 10.1007/s10853-009-3539-z.
  • A. Kumar , M. Založnik and H. Combeau , “Prediction of equiaxed grain structure and macrosegregation in an industrial steel ingot: Comparison with experiment,” Int. J. Adv. Eng. Sci. Appl. Math. , vol. 2, no. 4, pp. 140–148, 2010. DOI: 10.1007/s12572-011-0034-y.
  • A. Kumar , M. J. Walker , S. Sundarraj and P. Dutta , “Grain floatation during equiaxed solidification of an Al-Cu alloy in a side-cooled cavity: Part II—Numerical studies,” Metall. Mater. Trans. B , vol. 42, no. 4, pp. 783–799, 2011. [Mismatch] DOI: 10.1007/s11663-011-9542-1.
  • P. Chakraborty and P. Dutta , “Modeling of solid phase sedimentation during directional solidification in a side cooled cavity,” Int. J. Numer. Methods HFF , vol. 21, no. 8, pp. 913–934, 2011. DOI: 10.1108/09615531111177723.
  • P. R. Chakraborty and P. Dutta , “Study of freckles formation during directional solidification under the influence of single-phase and multiphase convection,” J. Therm. Sci. Eng. Appl. , vol. 5, no. 2, pp. 021004, 2013. DOI: 10.1115/1.4023601.
  • R. W. Powell , M. J. Woodman and R. P. Tye , “Further measurements relating to the anisotropic thermal conductivity of gallium,” Br. J. Appl. Phys. , vol. 14, no. 7, pp. 432–435, 1963. DOI: 10.1088/0508-3443/14/7/314/meta.
  • C. Gau and R. Viskanta , “Effect of natural convection on solidification from above and melting from below of a pure metal,” Int. J. Heat Mass Transf. , vol. 28, no. 3, pp. 573–587, 1985. DOI: 10.1016/0017-9310(85)90180-2.
  • C. Gau and R. Viskanta , “Effect of crystal anisotropy on heat transfer during melting and solidification of a metal,” J. Heat Transf. , vol. 107, no. 3, pp. 706–708, 1985. DOI: 10.1115/1.3247482.
  • C. Gau and R. Viskanta , “Melting and solidification of a pure metal on a vertical wall,” J. Heat Transf. , vol. 108, no. 1, pp. 174–181, 1986. DOI: 10.1115/1.3246884.
  • J. Kaenton , G. D. V. Davis , E. Leonardi and S. S. Leong , “A numerical study of anisotropy and convection during solidification,” Numer. Heat Transf. Part B Fundamentals. , vol. 41, no. 3-4, pp. 309–323, 2002. DOI: 10.1080/104077902753541032.
  • J. Kaenton , E. Semma , V. Timchenko , M. El Ganaoui , E. Leonardi and G. de Vahl Davis , “Effects of anisotropy and solid/liquid thermal conductivity ratio on flow instabilities during inverted Bridgman growth,” Int. J. Heat Mass Transf. , vol. 47, no. 14-16, pp. 3403–3413, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.01.017.
  • Q. Ge , Y. F. Yap , M. Zhang and J. C. Chai , “Modeling anisotropic diffusion using a departure from isotropy approach,” Comput. Fluids. , vol. 86, pp. 298–309, 2013. DOI: 10.1016/j.compfluid.2013.07.022.
  • R. Derebail and J. N. Koster , “Visualization study of melting and solidification in convecting hypoeutectic Ga-In alloy,” Int. J. Heat Mass Transf. , vol. 41, no. 16, pp. 2537–2548, 1998. DOI: 10.1016/S0017-9310(97)00145-2.
  • H. Yin and J. N. Koster , “In situ observation of concentrational stratification and solid–liquid interface morphology during Ga–5% In alloy melt solidification,” J. Crystal Growth. , vol. 205, no. 4, pp. 590–606, 1999. DOI: 10.1016/S0022-0248(99)00262-6..
  • H. Yin and J. N. Koster , “Double-diffusive convective flow and interface morphology during transient Ga–5%In alloy melting,” J. Crystal Growth. , vol. 217, no. 1-2, pp. 170–182, 2000. DOI: 10.1016/S0022-0248(00)00411-5..
  • S. Boden , S. Eckert , B. Willers and G. Gerbeth , “X-ray radioscopic visualization of the solutal convection during solidification of a Ga-30 wt pct in alloy,” Metall. Mater. Trans. A , vol. 39, no. 3, pp. 613–623, 2008. DOI: 10.1007/s11661-007-9462-5.
  • S. Boden , S. Eckert and G. Gerbeth , “Visualization of freckle formation induced by forced melt convection in solidifying Ga-In alloys,” Mater. Lett. , vol. 64, no. 12, pp. 1340–1343, 2010. DOI: 10.1016/j.matlet.2010.03.044.
  • J. N. Koster , “Directional solidification and melting of eutectic GaIn,” Cryst. Res. Technol. , vol. 34, no. 9, pp. 1129–1140, 1999. DOI: 10.1002/(SICI)1521-4079(199911)34:9 < 1129::AID-CRAT1129 > 3.0.CO;2-P.
  • N. Shevchenko , O. Roshchupkina , O. Sokolova and S. Eckert , “The effect of natural and forced melt convection on dendritic solidification in Ga–In alloys,” J. Crystal Growth. , vol. 417, pp. 1–8, 2015. DOI: 10.1016/j.jcrysgro.2014.11.043.
  • N. Shevchenko , S. Boden , G. Gerbeth and S. Eckert , “Chimney formation in solidifying Ga-25wt%In alloys under the influence of thermosolutal melt convection,” Metall. Mater. Trans. A. , vol. 44, no. 8, pp. 3797–3808, 2013. [Mismatch] DOI: 10.1007/s11661-013-1711-1.
  • S. K. Sahoo , P. Rath and M. K. Das , “Numerical study of phase change material based orthotropic heat sink for thermal management of electronics components,” Int. J. Heat Mass Transf. , vol. 103, pp. 855–867, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.063.
  • S. Patankar , Numerical Heat Transfer and Fluid Flow . Boca Raton, FL: CRC press, 1980.
  • A. Jakhar , A. Bhattacharya , P. Rath and S. K. Mahapatra , “Effect of thermal anisotropy on binary alloy dendrite growth,” Int. J. Heat Mass Transf. , vol. 127, pp. 1114–1127, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.141.
  • A. Jakhar , A. Bhattacharya , P. Rath and S. K. Mahapatra , “Combined effect of thermal anisotropy and forced convection on the growth of binary alloy equiaxed dendrites,” J. Therm. Sci. Eng. Appl. , vol. 11, no. 5, pp. 051010, 2019. DOI: 10.1115/1.4042587.
  • V. R. Voller , A. D. Brent and C. Prakash , “The modelling of heat, mass and solute transport in solidification systems,” Int. J. Heat Mass Transf. , vol. 32, no. 9, pp. 1719–1731, 1989. DOI: 10.1016/0017-9310(89)90054-9.
  • J. C. Han , Analytical Heat Transfer . Boca Raton, FL: CRC Press, 2016.
  • W. D. Bennon and F. P. Incropera , “Numerical analysis of binary solid-liquid phase change using a continuum model,” Numer. Heat Transf. Part B Fundamentals. , vol. 13, no. 3, pp. 277–296, 1988. DOI: 10.1080/10407788808913614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.