Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 6
153
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Novel numerical method for heat conduction using superposition of exact solutions

, &
Pages 365-384 | Received 26 Feb 2020, Accepted 25 Jun 2020, Published online: 09 Jul 2020

References

  • P. Majumdar, Computational Methods for Heat and Mass Transfer. New York: Taylor and Francis, 2005.
  • D. W. Pepper and J. C. Heinrich, The Finite Element Method: Basic Concepts and Applications. Washington, DC: Hemisphere, 1992.
  • R. Courant, K. O. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der Mathematischen Physik.” Math. Ann., vol. 100, no. 32–74, (English translation, with commentaries by P. B. Lax, O. B. Widlund, S. V. Parter, in IBM J. Res. Develop., vol. 11 (1967)), (1928). DOI: 10.1007/BF01448839.
  • V. Thomée, “From finite differences to finite elements A short history of numerical analysis of partial differential equations,” in Numerical Analysis: Historical Developments in the 20th Century, Elsevier, 2001, pp. 361–414.
  • R. Eymard, T. Gallouët, R. Herbin, and J. Latche, “Analysis tools for finite volume schemes,” Acta Math. Univ. Comenian.(NS), vol. 76, no. 1, pp. 111–136, 2007.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. Glasgow: Pearson Education, 2007.
  • M. Kumar, “A second order finite difference method and its convergence for a class of singular two-point boundary value problems,” Appl. Math. Comput., vol. 146, no. 2–3, pp. 873–878, 2003. DOI: 10.1016/S0096-3003(02)00645-8.
  • J. Zhao, “Compact finite difference methods for high order integro-differential equations,” Appl. Math. Comput., vol. 221, pp. 66–78, 2013. DOI: 10.1016/j.amc.2013.06.030.
  • H. R. Orlande, M. N. Özişik, M. J. Colaço, and R. M. Cotta, Finite Difference Methods in Heat Transfer. Boca Raton: CRC press, 2017.
  • M. Xu, “A high order scheme for unsteady heat conduction equations,” Appl. Mathe. Comput., vol. 348, pp. 565–574, 2019. DOI: 10.1016/j.amc.2018.12.024.
  • C.-K. Kim, “Adaptive finite element solution for the heat conduction with a moving heat source,” J. Mech. Sci. Technol., vol. 26, no. 3, pp. 967–972, 2012. DOI: 10.1007/s12206-011-1249-3.
  • Z. Luo, H. Li, and P. Sun, “A reduced-order Crank–Nicolson finite volume element formulation based on POD method for parabolic equations,” Appl. Math. Comput., vol. 219, no. 11, pp. 5887–5900, 2013. DOI: 10.1016/j.amc.2012.11.083.
  • W. Minkowycz, E. Sparrow, and J. Murthy, Handbook of Numerical Heat Transfer. New York: John Wiley and Sons, Inc., 1988.
  • V. Belik, B. Uryukov, G. Frolov, and G. Tkachenko, “Numerical-analytical method of solution of a nonlinear unsteady heat-conduction equation,” J. Eng. Phys. Thermophy, vol. 81, no. 6, pp. 1099–1103, 2008. DOI: 10.1007/s10891-009-0150-8.
  • W. Mansur, C. Vasconcellos, N. Zambrozuski, and O. R. Filho, “Numerical solution for the linear transient heat conduction equation using an Explicit Green’s Approach,” Int. J. Heat Mass Transfer, vol. 52, no. 3–4, pp. 694–701, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.036.
  • J. Alvarez-Ramirez and F. J. Valdes-Parada, “Non-standard finite-differences schemes for generalized reaction-diffusion equations,” J. Comput. Appl. Math., vol. 228, no. 1, pp. 334–343, 2009. DOI: 10.1016/j.cam.2008.09.026.
  • J. Alvarez-Ramirez, F. J. Valdes-Parada, J. Alvarez, and J. A. Ochoa-Tapia, “A Green's function formulation for finite-differences schemes,” Chem. Eng. Sci., vol. 62, no. 12, pp. 3083–3091, 2007. DOI: 10.1016/j.ces.2007.03.013.
  • E. Hernandez-Martinez, H. Puebla, F. Valdes-Parada, J. Alvarez-Ramirez and F. J. Valdes-Parada, “Nonstandard finite difference schemes based on Green’s function formulations for reaction–diffusion–convection systems,” Chem. Eng. Sci., vol. 94, pp. 245–255, 2013. DOI: 10.1016/j.ces.2013.03.001.
  • J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” in Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1947, pp. 50–67. DOI: 10.1017/S0305004100023197.
  • K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green's Functions, 2nd ed., Boca Raton, FL: CRC Press, 2011.
  • K. D. Cole, ExACT Analytical Conduction Toolbox. Available: http://exact.unl.edu, 2018.
  • J. V. Beck, N. T. Wright and A. Haji-Sheikh, Transient power variation in surface conditions in heat conduction for plates. Amsterdam, Great Britain: Elsevier Science B.V., 2008, pp. 2553. DOI: 10.1016/j.ijheatmasstransfer.2007.07.043.
  • K. A. Woodbury and J. V. Beck, “Heat conduction in a planar slab with power-law and polynomial heat flux input,” Int. J. Thermal Sci., vol. 71, pp. 237–248, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.