Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 1
270
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

An improved compressive volume of fluid scheme for capturing sharp interfaces using hybridization

ORCID Icon, & ORCID Icon
Pages 29-53 | Received 09 May 2020, Accepted 05 Jul 2020, Published online: 17 Jul 2020

References

  • O. Ubbink and R. I. Issa, “A method for capturing sharp fluid interfaces on arbitrary meshes,” J. Comput. Phys., vol. 153, no. 1, pp. 26–50, 1999. DOI: 10.1006/jcph.1999.6276.
  • M. I. Darwish, V. M. van Beek and J. Bruining, “Convective schemes for capturing interfaces of free-surface flows on unstructured grids,” Num. Heat Transfer, Part B: Fundamentals, vol. 49, no. 1, pp. 19–23, 2006. DOI: 10.1080/10407790500272137.
  • D. L. Youngs, “Time-dependent multi-material flow with large fluid distortion,” Num. Methods Fluid Dynamics, pp. 273–285, 1982. https://ci.nii.ac.jp/naid/10029507464/en/.
  • M. Rudman, “Volume-tracking methods for interfacial flow calculations,” Int. J. Numer. Meth. Fluids, vol. 24, no. 7, pp. 671–691, 1997. DOI: 10.1002/(SICI)1097-0363(19970415)24:7671::AID-FLD5083.0.CO;2-9.
  • Y. Renardy and M. Renardy, “Prost: A parabolic reconstruction of surface tension for the volume-of-fluid method,” J. Comput. Phys., vol. 183, no. 2, pp. 400–421, 2002. URL http://www.sciencedirect.com/science/article/pii/S0021999102971901. DOI: 10.1006/jcph.2002.7190.
  • S. Muzaferija, “A two-fluid navier-stokes solver to simulate water entry,” Proceeding of the 22nd Symposium of Naval Hydrodynamics, Washington, DC. https://ci.nii.ac.jp/naid/10019844096/en/.
  • B. Leonard and H. Niknafs, “Sharp monotonic resolution of discontinuities without clipping of narrow extrema,” Comput. Fluids, vol. 19, no. 1, pp. 141–154, 1991. DOI: 10.1016/0045-7930(91)90011-6.
  • B. Leonard, “The ultimate conservative difference scheme applied to unsteady one-dimensional advection,” Computer Methods Appl. Mech. Eng., vol. 88, no. 1, pp. 17–74, 1991. DOI: 10.1016/0045-7825(91)90232-U.
  • M. S. Darwish, “A new high-resolution scheme based on the normalized variable formulation,” Num. Heat Transf., Part B: Fund., vol. 24, no. 3, pp. 353–371, 1993. DOI: 10.1080/10407799308955898.
  • J. A. Heyns, A. G. Malan, T. M. Harms and O. F. Oxtoby, “Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach,” Int. J. Numer. Meth. Fluids, vol. 71, no. 6, pp. 788–804, 2013. DOI: 10.1002/fld.3694.
  • D. Zhang, C. Jiang, D. Liang, Z. Chen, Y. Yang and Y. Shi, “A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes,” J. Comput. Phys., vol. 274, pp. 709–736, 2014. DOI: 10.1016/j.jcp.2014.06.043.
  • Y.-y. Tsui, S.-w. Lin, T.-t. Cheng and T.-c. Wu, “Flux-blending schemes for interface capture in two-fluid flow,” Int. J. Heat Mass Transfer, vol. 52, no. 23–24, pp. 5547–5556, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.026.
  • J. K. Patel and G. Natarajan, “A generic framework for design of interface capturing schemes for multi-fluid flows,” Computers Fluids, vol. 106, pp. 108–118, 2015. http://www.sciencedirect.com/science/article/pii/S0045793014004009. DOI: 10.1016/j.compfluid.2014.10.005.
  • C. Hirt and B. Nichols, “Volume of fluid (vof) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • H. van der Vorst, “BiCGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput, vol. 13, no. 2, pp. 631–644, 1992. DOI: 10.1137/0913035.
  • J. Brackbill, D. Kothe and C. Zemach, “A continuum method for modeling surface tension,” J. Computat. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • H. K. Zinjala and J. Banerjee, “A consistent balanced force refined moment-of-fluid method for surface tension dominant two-phase flows,” Num. Heat Transf., Part B: Fundamentals, vol. 74, no. 1, pp. 432–449, 2018. DOI: 10.1080/10407790.2018.1495423.
  • M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian and M. W. Williams, “A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework,” J. Comput. Phys., vol. 213, no. 1, pp. 141–173, 2006. DOI: 10.1016/j.jcp.2005.08.004.
  • S. Popinet, “Numerical models of surface tension,” Annu. Rev. Fluid Mech., vol. 50, no. 1, pp. 49–75, 2018. DOI: 10.1146/annurev-fluid-122316-045034.
  • P. H. Gaskell and A. K. C. Lau, “Curvature-compensated convective transport: SMART, A new boundedness- preserving transport algorithm,” Int. J. Numer. Meth. Fluids, vol. 8, no. 6, pp. 617–641, 1988. DOI: 10.1002/fld.1650080602.
  • J. E. Fromm, “A method for reducing dispersion in convective difference schemes,” J. Comput. Phys., vol. 3, no. 2, pp. 176–189, 1968. DOI: 10.1016/0021-9991(68)90015-6.
  • J. Zhu, “A low-diffusive and oscillation-free convection scheme,” Commun. Appl. Numer. Methods, vol. 7, no. 3, pp. 225–232, 1991. DOI: 10.1002/cnm.1630070307.
  • H. Jasak, H. Weller and A. Gosman, “High resolution nvd differencing scheme for arbitrarily unstructured meshes,” Int. J. Numer. Meth. Fluids, vol. 31, no. 2, pp. 431–449, 1999. DOI: 10.1002/(SICI)1097-0363(19990930)31:2431::AID-FLD8843.0.CO;2-T.
  • D. Zhang, C. Jiang, D. Liang and L. Cheng, “A review on TVD schemes and a refined flux-limiter for steady-state calculations,” J. Comput. Phys., vol. 302, pp. 114–154, 2015. DOI: 10.1016/j.jcp.2015.08.042.
  • D. J. Harvie and D. F. Fletcher, “A new volume of fluid advection algorithm: The stream scheme,” J. Comput. Phys., vol. 162, no. 1, pp. 1–32, 2000. DOI: 10.1006/jcph.2000.6510.
  • W. J. Rider and D. B. Kothe, “Reconstructing volume tracking,” J. Comput. Phys., vol. 141, no. 2, pp. 112–152, 1998. DOI: 10.1006/jcph.1998.5906.
  • S. Saincher and J. Banerjee, “A redistribution-based volume-preserving PLIC-VOF technique,” Num. Heat Transf., Part B: Fundamentals, vol. 67, no. 4, pp. 338–362, 2015. DOI: 10.1080/10407790.2014.950078.
  • J. C. Martin, W. J. Moyce, W. G. Penney, A. T. Price and C. K. Thornhill, “Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane,” Philosoph. Trans. Roy. Soc. London. Series A, Math. Phys. Sci., vol. 244, no. 882, pp. 312–324, 1952. DOI: 10.1098/rsta.1952.0006.https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1952.0006.
  • T. Araki and S. Koshimura, “Numerical modeling of free surface flow by the lattice Boltzmann method,” J. Japan Soc. Civil Engineers, Ser. B2 (Coastal Engineering), vol. 65, no. 1, pp. 56–60, 2009. DOI: 10.2208/kaigan.65.56.
  • Y. Wang, C. Shu, H. Huang and C. Teo, “Multiphase lattice boltzmann flux solver for incompressible multiphase flows with large density ratio,” J. Comput. Phys., vol. 280, pp. 404–423, 2015. DOI: 10.1016/j.jcp.2014.09.035.
  • H. Yuan, Z. Chen, C. Shu, Y. Wang, X. Niu and S. Shu, “A free energy-based surface tension force model for simulation of multiphase flows by level-set method,” J. Comput. Phys., vol. 345, pp. 404–426, 2017. DOI: 10.1016/j.jcp.2017.05.020.
  • C. Josserand and S. Zaleski, “Droplet splashing on a thin liquid film,” Phys. Fluids, vol. 15, no. 6, pp. 1650–1657, 2003. DOI: 10.1063/1.1572815.
  • A. Yarin, “Drop impact dynamics: Splashing, spreading, receding, bouncing,” Annu. Rev. Fluid Mech, vol. 38, no. 1, pp. 159–192, 2006. DOI: 10.1146/annurev.fluid.38.050304.092144.
  • G. Coppola, G. Rocco and L. de Luca, “Insights on the impact of a plane drop on a thin liquid film,” Phys. Fluids, vol. 23, no. 2, pp. 022105, 2011. DOI: 10.1063/1.3555196.
  • N. Nikolopoulos, A. Theodorakakos and G. Bergeles, “Normal impingement of a droplet onto a wall film: A numerical investigation,” Int. J. Heat Fluid Flow, vol. 26, no. 1, pp. 119–132, 2005. DOI: 10.1016/j.ijheatfluidflow.2004.06.002.
  • N. Nikolopoulos, A. Theodorakakos and G. Bergeles, “Three-dimensional numerical investigation of a droplet impinging normally onto a wall film,” J. Comput. Phys., vol. 225, no. 1, pp. 322–341, 2007. DOI: 10.1016/j.jcp.2006.12.002.
  • J. Manik, A. Dalal and G. Natarajan, “A generic algorithm for three-dimensional multiphase flows on unstructured meshes,” Int. J. Multiphase Flow, vol. 106, pp. 228–242, 2018. DOI: 10.1016/j.ijmultiphaseflow.2018.04.010.
  • M. Rieber and A. Frohn, “A numerical study on the mechanism of splashing,” Int. J. Heat Fluid Flow, vol. 20, no. 5, pp. 455–461, 1999. DOI: 10.1016/S0142-727X(99)00033-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.