Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 3
235
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of electro-osmotic flow by lattice Boltzmann simulation and Helmholtz-Smoluchowski formula

ORCID Icon & ORCID Icon
Pages 130-149 | Received 12 Aug 2020, Accepted 01 Sep 2020, Published online: 22 Sep 2020

References

  • G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp. 368–373, 2006. DOI: 10.1038/nature05058.
  • D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng., vol. 4, no. 1, pp. 261–286, 2002. DOI: 10.1146/annurev.bioeng.4.112601.125916.
  • H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech., vol. 36, no. 1, pp. 381–411, 2004. DOI: 10.1146/annurev.fluid.36.050802.122124.
  • T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys., vol. 77, no. 3, pp. 977–1026, 2005. DOI: 10.1103/RevModPhys.77.977.
  • C.-C. Chang and R.-J. Yang, “Electrokinetic mixing in microfluidic systems,” Microfluid Nanofluid, vol. 3, no. 5, pp. 501–525, 2007.
  • A. D. Stroock and G. M. Whitesides, “Controlling flows in microchannels with patterned surface charge and topography,” Acc. Chem. Res., vol. 36, no. 8, pp. 597–604, 2003. DOI: 10.1021/ar0202870.
  • E. Brunet and A. Ajdari, “Thin double layer approximation to describe streaming current fields in complex geometries: Analytical framework and applications to microfluidics,” Phys. Rev. E., vol. 73, no. 5, pp. 056306, 2006. DOI: 10.1103/PhysRevE.73.056306.
  • J.-b. Zhang, G.-w. He, and F. Liu, “Electro-osmotic flow and mixing in heterogeneous microchannels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 73, no. 5 Pt 2, pp. 056305, 2006. DOI: 10.1103/PhysRevE.73.056305.
  • J. Wang, M. Wang, and Z. Li, “Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels,” J Colloid Interface Sci, vol. 296, no. 2, pp. 729–736, 2006. DOI: 10.1016/j.jcis.2005.09.042.
  • Z. Chai and B. Shi, “Simulation of electro-osmotic flow in microchannel with lattice boltzmann method,” Phys. Lett. A, vol. 364, no. 3-4, pp. 183–188, 2007.
  • Veniamin Grigorevich Levich. Physicochemical Hydrodynamics. Englewood Cliffs, NJ: Prentice Hall, 1962.
  • I. Rubinstein and B. Zaltzman, “Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes,” Math. Models Methods Appl. Sci., vol. 11, no. 02, pp. 263–300, 2001.
  • S. McLaughlin and M. M. Poo, “The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells,” Biophys. J., vol. 34, no. 1, pp. 85–93, 1981. DOI: 10.1016/S0006-3495(81)84838-2.
  • T. M. Squires and M. Z. Bazant, “Induced-charge electro-osmosis,” J. Fluid Mech., vol. 509, pp. 217–252, 2004.
  • A. Ajdari, “Electro-osmosis on inhomogeneously charged surfaces,” Phys. Rev. Lett., vol. 75, no. 4, pp. 755–758, 1995. DOI: 10.1103/PhysRevLett.75.755.
  • J. L. Anderson and W. Keith Idol, “Electroosmosis through pores with nonuniformly charged walls,” Chem. Eng. Commun., vol. 38, no. 3-6, pp. 93–106, 1985.
  • J. Cervera, V. García-Morales, and J. Pellicer, “Ion size effects on the electrokinetic flow in nanoporous membranes caused by concentration gradients,” J. Phys. Chem. B, vol. 107, no. 33, pp. 8300–8309, 2003.
  • F. Fogolari, A. Brigo, and H. Molinari, “The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology,” J. Mol. Recogn., vol. 15, no. 6, pp. 377–392, 2002. DOI: 10.1002/jmr.577.
  • K. A. Sharp and B. Honig, “Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation,” J. Phys. Chem., vol. 94, no. 19, pp. 7684–7692, 1990.
  • W. Im, D. Beglov, and B. Roux, “Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation,” Comput. Phys. Commun., vol. 111, no. 1-3, pp. 59–75, 1998. DOI: 10.1016/S0010-4655(98)00016-2.
  • B. Hering and H. Bliss, “Diffusion in ion exchange resins,” AIChE J., vol. 9, no. 4, pp. 495–503, 1963.
  • H. Cohen and J. W. Cooley, “The numerical solution of the time-dependent Nernst-Planck equations,” Biophys. J., vol. 5, no. 2, pp. 145–162, 1965.
  • A. González, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, “Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 61, no. 4 Pt B, pp. 4019–4028, 2000. DOI: 10.1103/physreve.61.4019.
  • B. Corry, S. Kuyucak, and S.-H. Chung, “Tests of continuum theories as models of ion channels. II. Poisson–Nernst–Planck theory versus Brownian dynamics,” Biophys. J., vol. 78, no. 5, pp. 2364–2381, 2000.
  • H. Yoshida, T. Kinjo, and H. Washizu, “Coupled lattice Boltzmann method for simulating electrokinetic flows: a localized scheme for the Nernst–Plank model,” Commun. Nonlinear Sci. Numer. Simul., vol. 19, no. 10, pp. 3570–3590, 2014. DOI: 10.1016/j.cnsns.2014.03.005.
  • R.-J. Yang, L.-M. Fu, and C.-C. Hwang, “Electroosmotic entry flow in a microchannel,” J. Colloid Interface Sci., vol. 244, no. 1, pp. 173–179, 2001.
  • D. Hlushkou, D. Kandhai, and U. Tallarek, “Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels,” Int. J. Numer. Methods Fluids, vol. 46, no. 5, pp. 507–532, 2004.
  • Y. H. Qian, D. d’Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–484, 1992.
  • X. He and L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E, vol. 56, no. 6, pp. 6811–6817, 1997. DOI: 10.1103/PhysRevE.56.6811.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, 1998.
  • A. M. Abdulmajeed, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer Science & Business Media, 2011.
  • T. Kruger, H. Kusumaatmaja, A. Kuzmin, O. Shardat, G. Silva, and E. M. Viggen, The Lattice Boltzmann Methods: Principles and Practice. Springer International Publishing Switzerland, 2017.
  • J. Zhao, W. Cai, and Y. Jiang, “Estimation of computational grid for thermal convection simulation with lattice boltzmann method,” Numer. Heat Transf. Part B. Fundam., vol. 73, no. 3, pp. 155–168, 2018.
  • P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev., vol. 94, no. 3, pp. 511–525, 1954.
  • Q. Zou, S. Hou, and G. D. Doolen, “Analytical solutions of the lattice Boltzmann BGK model,” J. Stat. Phys.., vol. 81, no. 1-2, pp. 319–334, 1995.
  • X. He, S. Chen, and G. D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit,” J. Comput. Phys., vol. 146, no. 1, pp. 282–300, 1998.
  • B. Chopard, J. L. Falcone, and J. Latt, “The lattice Boltzmann advection-diffusion model revisited,” Eur. Phys. J. Spec. Top., vol. 171, no. 1, pp. 245–249, 2009.
  • E. G. Flekkøy, “Lattice Bhatnagar-Gross-Krook models for miscible fluids,” Phys. Rev. E., vol. 47, no. 6, pp. 4247–4257, 1993.
  • G. R. McNamara and G. Zanetti, “Use of the Boltzmann equation to simulate lattice gas automata,” Phys. Rev. Lett., vol. 61, no. 20, pp. 2332–2335, 1988. DOI: 10.1103/PhysRevLett.61.2332.
  • X. He and L.-S. Luo, “Lattice Boltzmann model for the incompressible Navier–Stokes equation,” J. Stat. Phys., vol. 88, no. 3/4, pp. 927–944, 1997.
  • Luo, L. S. “Lattice-gas automata and lattice Boltzmann equations for two-dimensional hydrodynamics,” Doctoral diss., School of Physics, Georgia Institute of Technology, 1993.
  • G. Liu, B. Zhang, Y. Zhang, and C. Guo, “Modeling of double-layer triangular microchannel heat sink based on thermal resistance network and multivariate structural optimization using firefly algorithm,” Numer. Heat Transf. Part B Fundam., vol. 77, no. 5, pp. 417–428, 2020 DOI: 10.1080/10407790.2020.1717834
  • A. A. Mohamad and A. Kuzmin, “A critical evaluation of force term in lattice Boltzmann method, natural convection problem,” Int. J. Heat Mass Transf., vol. 53, no. 5-6, pp. 990–996, 2010.
  • X. Shan, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method,” Phys. Rev. E., vol. 55, no. 3, pp. 2780–2788, 1997.
  • I. Ginzburg, “Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations,” Adv. Water Res., vol. 28, no. 11, pp. 1196–1216, 2005.
  • J. Cervera, P. Ramírez, J. A. Manzanares, and S. Mafé, “Incorporating ionic size in the transport equations for charged nanopores,” Microfluid Nanofluid, vol. 9, no. 1, pp. 41–53, 2010.
  • M. Gouy, “Sur la constitution de la charge électrique à la surface d’un électrolyte,” J. Phys. Theor. Appl., vol. 9, no. 1, pp. 457–468, 1910.
  • D. Leonard Chapman, “Li. a contribution to the theory of electrocapillarity.” Lond. Edinb. Dubl. Philos. Mag. J. Sci., vol. 25, no. 148, pp. 475–481, 1913.
  • F. H. Stillinger, Jrand J. G. Kirkwood, “Theory of the diffuse double layer,” J. Chem. Phys., vol. 33, no. 5, pp. 1282–1290, 1960.
  • P. Debye and E. Hückel, “De la theorie des electrolytes. I. Abaissement du point de congelation et phenomenes associes,” Phys. Z., vol. 24, no. 9, pp. 185–206, 1923.
  • D. C. Brydges and P. A. Martin, “Coulomb systems at low density: a review,” J. Stat. Phys., vol. 96, no. 5/6, pp. 1163–1330, 1999. DOI: 10.1023/A:1004600603161.
  • I. B. Bernstein and I. N. Rabinowitz, “Theory of electrostatic probes in a low-density plasma.” Phys. Fluids, vol. 2, no. 2, pp. 112–121, 1959.
  • F. Fogolari, P. Zuccato, G. Esposito, and P. Viglino, “Biomolecular electrostatics with the linearized Poisson-Boltzmann equation,” Biophys. J., vol. 76, no. 1 Pt 1, pp. 1–16, 1999.
  • Q. Zheng and G.-W. Wei, “Poisson-Boltzmann-Nernst-Planck model,” J. Chem. Phys., vol. 134, no. 19, pp. 194101, 2011. DOI: 10.1063/1.3581031.
  • B. Honig and A. Nicholls, “Classical electrostatics in biology and chemistry,” Science, vol. 268, no. 5214, pp. 1144–1149, 1995. DOI: 10.1126/science.7761829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.