Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 4
177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Implicit discrete ordinates discontinuous Galerkin method for radiation problems on shared-memory multicore CPU/many-core GPU computation architecture

Pages 165-188 | Received 10 Dec 2018, Accepted 25 Mar 2019, Published online: 29 Sep 2020

References

  • G. N. Lygidakis and I. K. Nikolos, “Assessment of different spatial/angular agglomeration multigrid schemes for the acceleration of FVM radiative heat transfer computations,” Numer. Heat Transfer B, vol. 69, no. 5, pp. 389–412, 2016. DOI: 10.1080/10407790.2016.1138701.
  • J. Kophazi and D. Lathouwers, “A space–angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement,” J. Comput. Phys, vol. 297, pp. 637–668, 2015. DOI: 10.1016/j.jcp.2015.05.031.
  • J. S. Warsa, “A continuous finite element-based, discontinuous finite element method for sn transport,” Nucl. Sci. Eng., vol. 160, no. 3, pp. 385–400, 2008. DOI: 10.13182/NSE160-385TN.
  • E. Machorro, “Discontinuous Galerkin finite element method applied to the 1-d spherical neutron transport equation,” J. Comput. Phys., vol. 223, no. 1, pp. 67–81, 2007. DOI: 10.1016/j.jcp.2006.08.020.
  • S. Giani and M. Seaid, “HP-adaptivity discontinuous Galerkin methods for simplified p_n approximations of frequency-dependent radiative transfer,” Comput. Methods. Appl. Mech. Eng., vol. 301, pp. 52–79, 2016. DOI: 10.1016/j.cma.2015.12.013.
  • R. B. Lowrie and J. E. Morel, “Discontinuous Galerkin for hyperbolic systems with stiff relaxation,” in Discontinuous Galerkin Methods: Theory, Computation and Application, B. Cockburn and G. E. Karniadakis, Eds. New York: Springer, 2000, pp. 385–390..
  • R. McClarren, V. Laboure and C. Hauck, “Implicit filtered Pn for high-energy density thermal radiation transport using discontinuous Galerkin finite elements,” J. Comput. Phys., vol. 321, pp. 624–643, 2016.
  • J. Huang, W. Han and J. Eichholz, “Discrete-ordinates discontinuous Galerkin methods for solving the radiative transfer equation,” SIAM J. Sci. Comput, vol. 32, no. 2, pp. 477–497, 2010. DOI: 10.1137/090767340.
  • J. L. Guermond and G. Kanschat, “Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusion limit,” SIAM J. Numer. Anal., vol. 48, no. 1, pp. 53–78, 2010. DOI: 10.1137/090746938.
  • Y. Saad, Iterative Methods for Sparse Linear Systems. Boston, MA: International Thomson Publishing, 1996.
  • Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856–869, 1986. DOI: 10.1137/0907058.
  • H. A. van der Vorst, “BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 13, no. 2, pp. 631–644, 1992. DOI: 10.1137/0913035.
  • R. Singh and K. M. Singh, “On preconditioned BICGSTAB solver for MLPG method applied to heat conduction in complex geometry,” Numer. Heat Transfer B, vol. 72, no. 5, pp. 377–391, 2017. DOI: 10.1080/10407782.2017.1400335.
  • Y. Saad, “Krylov subspace methods on supercomputers,” SIAM J. Sci. Stat. Comput., vol. 10, no. 6, pp. 1200–1232, 1989. DOI: 10.1137/0910073.
  • MPI forum. MPI-2: Extensions to the message–passing interfaces. Available: http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html, 1997.
  • OpenMP website. Available: http://www.openmp.org.
  • J. Tal, R. Ben-Zvil and A. Kribus, “A high-efficiency parallel solution of the radiative transfer equation,” Numer. Heat Transfer B, vol. 44, no. 3, pp. 295–308, 2003. DOI: 10.1080/713836382.
  • J. Gon Alves and P. J. Coelho, “Parallelization of the discrete ordinates method,” Numer. Heat Transfer B, vol. 32, no. 2, pp. 151–173, 1997. DOI: 10.1080/10407799708915003.
  • Ö. Yιldιz and H. Bedir, “A parallel solution to the radiative transport in three-dimensional participating media,” Numer. Heat Transfer B, vol. 50, no. 1, pp. 79–95, 2006. DOI: 10.1080/10407790500459361.
  • G. Krishnamoorthy, R. Rawat and P. J. Smith, “Parallel computations of radiative heat transfer using the discrete ordinates method,” Numer. Heat Transfer B, vol. 47, no. 1, pp. 19–38, 2004. DOI: 10.1080/10407790490487451.
  • S. D. Pautz, “An algorithm for parallel SN sweeps on unstructured meshes,” Nucl. Sci. Eng., vol. 140, no. 2, pp. 111–136, 2002. DOI: 10.13182/NSE02-1.
  • R. S. Baker and K. R. Koch, “An SN algorithm for the massively parallel cm-200 computer,” Nucl. Sci. Eng., vol. 128, no. 3, pp. 312–320, 1998. DOI: 10.13182/NSE98-1.
  • J. Liu, H. M. Shang and Y. S. Chen, “Parallel simulation of radiative heat transfer using an unstructured finite-volume method,” Numer. Heat Transfer B, vol. 36, pp. 115–137, 1999.
  • NVIDIA CUDA website. Available: http://developer.nvidia.com/cuda-zone.
  • W. Fu, W. Wang, C. Li and M. Tsubokura, “An investigation of the unstable phenomena of natural convection in parallel square plates by multi-GPU implementation,” Numer. Heat Transfer B, vol. 71, no. 1, pp. 66–83, 2017. DOI: 10.1080/10407790.2016.1257224.
  • M. F. Modest, Radiative Heat Transfer, 2nd ed. New York: Academic Press, 2003.
  • P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Computer Science and Applied Mathematics. New York: Academic Press, 1975.
  • A. Erdelyi and E. Robert, Higher Transcendental Functions, vols. I–III. Huntington, New York: Krieger Publishing Company, 1953.
  • G. D. Raithby and E. H. Chui, “A finite-volume method for predicting radiant heat transfer in enclosures with participating media,” J. Heat Transfer, vol. 112, no. 2, pp. 415–423, 1990. DOI: 10.1115/1.2910394.
  • T. Warburton and J. S. Hesthaven, “Nodal high-order methods on unstructured grids I. Time-domain solution of Maxwell’s equations,” J. Comput. Phys., vol. 181, no. 1, pp. 186–221, 2002. DOI: 10.1006/jcph.2002.7118.
  • A. C. Ratzel and J. R. Howell, “Two-dimensional radiation in absorbing–emitting media using the p–n approximation,” J. Heat Transfer, vol. 105, no. 2, pp. 333–340, 1983. DOI: 10.1115/1.3245583.
  • Y. Saad and J. Zhang, “BLUTM: A domain-based multilevel block ILUT preconditioner for general sparse matrices,” SIAM J. Matrix Anal. Appl., vol. 21, no. 1, pp. 279–299, 1999. DOI: 10.1137/S0895479898341268.
  • Y. Saad, “Multilevel ILU with reorderings for diagonal dominance,” SIAM J. Sci. Comput., vol. 27, no. 3, pp. 1032–1057, 2005. DOI: 10.1137/030602733.
  • Y. Saad, “ILUT: A dual threshold incomplete ILU factorization,” Numer. Linear Alg. Appl., vol. 1, no. 4, pp. 387–402, 1994. DOI: 10.1002/nla.1680010405.
  • K. Swirydowicz, E. de Sturler, X. Xu and C. J. Roy, “Fast solvers and preconditioners on GPU,” Society for Industrial and Applied Mathematics (SIAM) Annual Meeting (an14), Chicago, Illinois, USA, 2014.
  • N. Karlsson, “An incompressible Navier–Stokes equations solver on the GPU using CUDA,” Master Thesis, Chalmers University of Technology, Department of Computer Science and Engineering, Goteborg, Sweden, August, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.