Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 5-6
259
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear enthalpy transformation for transient convective phase change in Smoothed Particle Hydrodynamics (SPH)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 255-277 | Received 26 Nov 2020, Accepted 10 May 2021, Published online: 02 Jun 2021

References

  • A. Dalhuijsen and A. Segal, “Comparison of finite element techniques for solidification problems,” Int. J. Numer. Meth. Eng., vol. 23, no. 10, pp. 1807–1829, 1986. DOI: 10.1002/nme.1620231003.
  • P. L.-F. Liu, H. H.-J. Yeh, and C. Synolakis, Advanced Numerical Models for Simulating Tsunami Waves and Runup. Singapore: World Scientific, 2008. http://opac.inria.fr/record=b1120438.
  • B. Cartwright, P. Groenenboom, and D. McGuckin, “Examples of ship motion and wash predictions by smoothed particle hydrodynamics (SPH),” in 9th Symposium on Practical Design of Ships and Other Floating Structures, Luebeck-Travemuende, Germany, 2004.
  • A. Farrokhpanah and J. Mostaghimi, “Application of multiphase particle methods in atomization and breakup regimes of liquid jets,” in ASME 2014 4th Joint US–European Fluids Engineering Division Summer Meeting American Society of Mechanical Engineers, 2014.
  • A. Farrokhpanah, B. Samareh, and J. Mostaghimi, “Droplet impact: a GPU based smoothed particle hydrodynamics (SPH) approach,” in ASME 2012 Fluids Engineering Division Summer Meeting American Society of Mechanical Engineers, 2012, pp. 615–623.
  • X. Hu and N. Adams, “A multi-phase SPH method for macroscopic and mesoscopic flows,” J. Comput. Phys., vol. 213, no. 2, pp. 844–861, 2006. DOI: 10.1016/j.jcp.2005.09.001.
  • N. Grenier, D. Touze, M. Antuono, and A. Colagrossi, “An improved SPH method for multi-phase simulations,” in 8th International Conference on Hydrodynamics, ICHD, 2008.
  • A. M. Tartakovsky, K. F. Ferris, and P. Meakin, “Lagrangian particle model for multiphase flows,” Comput. Phys. Commun., vol. 180, no. 10, pp. 1874–1881, 2009.
  • M. Passandideh-Fard and J. Mostaghimi, “Droplet impact and solidification in a thermal spray process: Droplet-substrate interactions,” in Proceedings of the 9th National Thermal Spray Conference, 1996.
  • V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection–diffusion mushy region phase change problems,” Int. J. Heat Mass Transfer, vol. 30, no. 8, pp. 1709–1719, 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • B. Thomas, I. Samarasekera, and J. Brimacombe, “Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems,” MTB, vol. 15, no. 2, pp. 307–318, 1984. DOI: 10.1007/BF02667334.
  • J. Hsiao and B. T. Chung, “An efficient algorithm for finite element solution to two-dimensional heat transfer with melting and freezing,” In: J. Heat Transfer, vol. 108, no. 2, pp. 462–464, 1986. DOI: 10.1115/1.3246948.
  • A. Farrokhpanah, M. Bussmann, and J. Mostaghimi, “New smoothed particle hydrodynamics (SPH) formulation for modeling heat conduction with solidification and melting,” Numer. Heat Transfer, Part B: Fund., vol. 71, no. 4, pp. 299–312, 2017. DOI: 10.1080/10407790.2017.1293972.
  • P. Cleary, J. Ha, J. Mooney, and V. Ahuja, “Effect of heat transfer and solidification on high pressure die casting,” in Proc. 13th Australasian Fluid Mechanics Conference, Melbourne, 1998, pp. 679–682.
  • P. Cleary, J. Ha, M. Prakash, and T. Nguyen, “3D SPH flow predictions and validation for high pressure die casting of automotive components,” Appl. Math. Model., vol. 30, no. 11, pp. 1406–1427, 2006. DOI: 10.1016/j.apm.2006.03.012.
  • P. W. Cleary, “Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting,” Appl. Math. Model., vol. 34, no. 11, pp. 3189–3201, 2010. DOI: 10.1016/j.apm.2010.02.012.
  • M. Zhang, H. Zhang, and L. Zheng, “Application of smoothed particle hydrodynamics method to free surface and solidification problems,” Numer. Heat Transfer, Part A: Appl., vol. 52, no. 4, pp. 299–314, 2007. DOI: 10.1080/00397910601150007.
  • M. Zhang, H. Zhang, and L. Zheng, “Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method,” Int. J. Heat Mass Transfer, vol. 51, no. 13–14, pp. 3410–3419, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.009.
  • M. Zhang, H. Zhang, and L. Zheng, “Numerical investigation of substrate melting and deformation during thermal spray coating by SPH method,” Plasma Chem. Plasma Process, vol. 29, no. 1, pp. 55–68, 2009. DOI: 10.1007/s11090-008-9158-7.
  • J. J. Monaghan, H. E. Huppert, and M. G. Worster, “Solidification using smoothed particle hydrodynamics,” J. Comput. Phys., vol. 206, no. 2, pp. 684–705, 2005. DOI: 10.1016/j.jcp.2004.11.039.
  • Y. Cao, A. Faghri, and W. S. Chang, “A numerical analysis of Stefan problems for generalized multi-dimensional phase change structures using the enthalpy transforming model,” Int. J. Heat Mass Transfer, vol. 32, no. 7, pp. 1289–1298, 1989. DOI: 10.1016/0017-9310(89)90029-X.
  • J. J. Monaghan, “Smoothed particle hydrodynamics and its diverse applications,” Annu. Rev. Fluid Mech., vol. 44, no. 1, pp. 323–346, 2012. DOI: 10.1146/annurev-fluid-120710-101220.
  • A. M. Tartakovsky and P. Meakin, “A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability,” J. Comput. Phys., vol. 207, no. 2, pp. 610–624, 2005. DOI: 10.1016/j.jcp.2005.02.001.
  • D. W. Holmes, J. R. Williams, and P. Tilke, “Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media,” Int. J. Numer. Anal. Meth. Geomech., vol. 35, no. 4, pp. 419–437, 2011. DOI: 10.1002/nag.898.
  • J. J. Monaghan, “SPH without a tensile instability,” J. Comput. Phys., vol. 159, no. 2, pp. 290–311, 2000. DOI: 10.1006/jcph.2000.6439.
  • P. W. Cleary and J. J. Monaghan, “Conduction modelling using smoothed particle hydrodynamics,” J. Comput. Phys., vol. 148, no. 1, pp. 227–264, 1999. DOI: 10.1006/jcph.1998.6118.
  • S. Meng, R. Yang, J.-S. Wu, and H. Zhang, “Simulation of droplet spreading on porous substrates using smoothed particle hydrodynamics,” Int. J. Heat Mass Transfer, vol. 77, pp. 828–833, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.056.
  • V. Voller, A. Brent, and C. Prakash, “Modelling the mushy region in a binary alloy,” Appl. Math. Model., vol. 14, no. 6, pp. 320–326, 1990. DOI: 10.1016/0307-904X(90)90084-I.
  • S. Alavi, M. Passandideh-Fard, and J. Mostaghimi, “Simulation of semi-molten particle impacts including heat transfer and phase change,” J. Therm. Spray Tech., vol. 21, no. 6, pp. 1278–1293, 2012. DOI: 10.1007/s11666-012-9804-8.
  • H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. Oxford: Clarendon Press, 1959.
  • A. Crowley, “Numerical solution of Stefan problems,” Int. J. Heat Mass Transfer, vol. 21, no. 2, pp. 215–219, 1978. DOI: 10.1016/0017-9310(78)90225-9.
  • C.-S. Keung, The Use of Sources and Sinks in Solving Two-Dimensional Heat Conduction Problems with Change of Phase in Arbitrary Domains, Columbia University, Diss., 1980.
  • S. D. Aziz and S. Chandra, “Impact, recoil and splashing of molten metal droplets,” Int. J. Heat Mass Transfer, vol. 43, no. 16, pp. 2841–2857, 2000. DOI: 10.1016/S0017-9310(99)00350-6.
  • M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, “A three-dimensional model of droplet impact and solidification,” Int. J. Heat Mass Transfer, vol. 45, no. 11, pp. 2229–2242, 2002. DOI: 10.1016/S0017-9310(01)00336-2.
  • A. Farrokhpanah, T. W. Coyle, and J. Mostaghimi, “Numerical study of suspension plasma spraying,” J. Therm. Spray Tech., vol. 26, no. 1–2, pp. 12–36, 2017. DOI: 10.1007/s11666-016-0502-9.
  • M. Pasandideh‐Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, vol. 8, no. 3, pp. 650–659, 1996. DOI: 10.1063/1.868850.
  • G. R. Johnson, R. A. Stryk, and S. R. Beissel, “SPH for high velocity impact computations,” Comput. Methods Appl. Mech. Eng., vol. 139, no. 1–4, pp. 347–373, 1996. DOI: 10.1016/S0045-7825(96)01089-4.
  • J. J. Monaghan and J. C. Lattanzio, “A refined particle method for astrophysical problems,” Astron. Astrophy., vol. 149, pp. 135–143, 1985.
  • G.-R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.