Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 4
140
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear approximation for buoyancy-driven mixed convection heat and mass transfer flow over an inclined porous plate with Joule heating, nonlinear thermal radiation, viscous dissipation, and thermophoresis effects

&
Pages 139-161 | Received 30 Aug 2022, Accepted 14 Nov 2022, Published online: 05 Dec 2022

References

  • S. L. Goren, “Thermophoresis of aerosol particles in the laminar boundary layer on a flat plate,” J. Colloid Interface Sci., vol. 61, no. 1, pp. 77–85, 1977. DOI: 10.1016/0021-9797(77)90416-7.
  • A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 4, pp. 1064–1068, 2009. DOI: 10.1016/j.cnsns.2008.05.003.
  • B. K. Jha and G. Samaila, “Thermal radiation effect on boundary layer over a flat plate having convective surface boundary condition,” SN Appl. Sci., vol. 2, no. 3, pp. 381, 2020. DOI: 10.1007/s42452-020-2167-8.
  • K. Das, “Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties,” Heat Mass Transf., vol. 48, no. 5, pp. 767–778, 2012. DOI: 10.1007/s00231-011-0924-3.
  • N. Ali, M. Nazeer, T. Javed, and M. A. Siddiqui, “Buoyancy-driven cavity flow of a micropolar fluid with variably heated bottom wall,” Heat Transf. Res., vol. 49, no. 5, pp. 457–481, 2018. DOI: 10.1615/HeatTransRes.2018019422.
  • O. D. Makinde and A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1813–1820, 2010. DOI: 10.1016/j.ijthermalsci.2010.05.015.
  • O. D. Makinde and P. O. Olanrewaju, “Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition,” J. Fluids Eng., vol. 132, no. 4, pp. 44502, 2010.
  • B. K. Jha and G. Samaila, “A similarity solution for natural convection flow near a vertical plate with thermal radiation,” Microgravity Sci. Technol., vol. 32, no. 6, pp. 1031–1038, 2020. DOI: 10.1007/s12217-020-09830-y.
  • K. Sharma and S. Gupta, “Homotopy analysis solution to thermal radiation effects on MHD boundary layer flow and heat transfer towards an inclined plate with convective boundary conditions,” Int. J. Appl. Comput. Math., vol. 3, no. 3, pp. 2533–2552, 2017. DOI: 10.1007/s40819-016-0249-5.
  • P. S. Reddy and P. Sreedevi, “MHD boundary layer heat and mass transfer flow of nanofluid through porous media over inclined plate with chemical reaction,” Multidisp. Model. Mater. Struct., vol. 17, no. 2, pp. 317–336, 2020. DOI: 10.1108/MMMS-03-2020-0044.
  • M. Goyal and R. Bhargava, “Simulation of natural convective boundary layer flow of a nanofluid past a convectively heated inclined plate in the presence of magnetic field,” Int. J. Appl. Comput. Math., vol. 4, no. 2, pp. 1–24, 2018. DOI: 10.1007/s40819-018-0483-0.
  • M. S. Alam, M. M. Rahman, and M. A. Sattar, “On the effectiveness of viscous dissipation and Joule heating on steady Magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 5, pp. 2132–2143, 2009. DOI: 10.1016/j.cnsns.2008.06.008.
  • S. Sengupta and D. Shadap, “MHD dissipative fluid past a stretching sheet in the presence of Soret effect with Newtonian convective heat and mass conditions,” Heat Transf. Asian Res., vol. 48, no. 2, pp. 684–712, 2019. DOI: 10.1002/htj.21401.
  • S. Sangapatanam, N. Reddy, and V. R. Prasad, “Thermal radiation effects on MHD free convection flow past an impulsively started vertical plate with variable surface temperature and concentration,” J. Nav. Archit. Mar. Eng., vol. 5, pp. 57–70, 2009. DOI: 10.3329/jname.v5i2.2695.
  • G. K. Ramesh, B. J. Gireesha, and C. S. Bagewadi, “Heat transfer in MHD dusty boundary layer flow over an inclined stretching sheet with non-uniform heat source/sink,” Adv. Math. Phys., vol. 2012, pp. 1–13, 2012. DOI: 10.1155/2012/657805.
  • M. A. A. Mahmoud, “Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity,” Phys. A Stat. Mech. Appl., vol. 375, no. 2, pp. 401–410, 2007. DOI: 10.1016/j.physa.2006.09.0.
  • M. R. Ilias, N. S. Aidah Ismail, N. H. A. Raji, N. A. Rawi, and S. Shafie, “Unsteady aligned mhd boundary layer flow and heat transfer of a magnetic nanofluids past an inclined plate,” Int. J. Mech. Eng. Robot Res., vol. 9, no. 2, pp. 197–206, 2020. DOI: 10.18178/ijmerr.9.2.197-206.
  • K. Bhattacharyya and G. C. Layek, “Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation,” Int. J. Heat Mass Transf., vol. 54, no. 1–3, pp. 302–307, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.043.
  • B. Jha and G. Samaila, “Similarity solution for boundary layer flow near a moving vertical porous plate with combined effects of nonlinear thermal radiation and suction/injection having convective surface boundary condition,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 16, pp. 8926–8934, 2022.
  • N. Acharya, “On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy,” J. Therm. Anal. Calorim., vol. 141, no. 4, pp. 1425–1442, 2020. DOI: 10.1007/s10973-019-09111-w.
  • B. J. Gireesha, M. Umeshaiah, B. C. Prasannakumara, N. S. Shashikumar, and M. Archana, “Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet,” Phys. A Stat. Mech. Appl., vol. 549, pp. 124051, 2020.
  • S. V. V. Rama Devi and M. G. Reddy, “Parametric analysis of MHD flow of nanofluid in stretching sheet under chemical sensitivity and thermal radiation,” Heat Transf., vol. 51, no. 1, pp. 948–975, 2022. DOI: 10.1002/htj.22337.
  • H. R. Patel and R. Singh, “Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, Joule heating and convective boundary condition,” Int. Commun. Heat Mass Transf., vol. 107, pp. 68–92, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.05.007.
  • L. Cao, X. Si, L. Zheng and H. Pang, “The analysis of the suction/injection on the MHD Maxwell fluid past a stretching plate in the presence of nanoparticles by Lie group method,” Open Phys., vol. 13, no. 1, 2015.
  • S. Ahmed and H. Khatun, “Magnetohydrodynamic oscillatory flow in a planer porous channel with suction and injection,” Int. J. Eng. Technol., vol. 11, pp. 1024–1029, 2013.
  • M. Ferdows, M. Shamshuddin, and K. Zaimi, “Computation of steady free convective boundary layer viscous fluid flow and heat transfer towards the moving flat subjected to suction/injection effects,” CFD Lett., vol. 13, no. 3, pp. 16–24, 2021. DOI: 10.37934/cfdl.13.3.1624.
  • H. Upreti, A. K. Pandey, and M. Kumar, “Thermophoresis and suction/injection roles on free convective MHD flow of Ag–kerosene oil nanofluid,” J. Comput. Des. Eng., vol. 7, no. 3, pp. 386–396, 2020. DOI: 10.1093/jcde/qwaa031.
  • B. K. Jha and G. Samaila, “Impact of nonlinear thermal radiation on nonlinear mixed convection flow near a vertical porous plate with convective boundary condition,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 236, no. 2, pp. 600–608, 2022.
  • H. Upreti, A. K. Pandey, Z. Uddin and M. Kumar, “Thermophoresis and Brownian motion effects on 3D flow of Casson nanofluid consisting microorganisms over a Riga plate using PSO: A numerical study,” Chin. J. Phys., vol. 78, pp. 234–270, 2022. DOI: 10.1016/j.cjph.2022.06.019.
  • M. Zaydan, A. Wakif, I. L. Animasaun, U. Khan, D. Baleanu and R. Sehaqui, “Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno’s nanofluid model,” Case Stud Therm. Eng., vol. 22, pp. 100726, 2020.
  • Y. Wu, W. Zhang, Z. Zou, and J. Chen, “Effects of heat transfer on separated boundary layer behavior under adverse pressure gradients,” Int. J. Heat Mass Transf., vol. 142, pp. 118348, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.104.
  • A. Hussain, et al., “A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition,” Case Stud. Therm. Eng., vol. 26, pp. 101089, 2021.
  • A. Mishra, A. K. Pandey, A. J. Chamkha, and M. Kumar, “Roles of nanoparticles and heat generation/absorption on MHD flow of Ag–H2O nanofluid via porous stretching/shrinking convergent/divergent channel,” J. Egypt. Math. Soc., vol. 28, no. 1, pp. 17, 2020. DOI: 10.1186/s42787-020-00079-3.
  • K. Singh, A. K. Pandey, and M. Kumar, “Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder,” J. Egypt. Math. Soc., vol. 29, no. 1, pp. 1, 2021. DOI: 10.1186/s42787-020-00109-0.
  • B. K. Jha, M. O. Oni, and B. Aina, “Steady fully developed mixed convection flow in a vertical micro-concentric-annulus with heat generating/absorbing fluid: An exact solution,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1289–1301, 2018. DOI: 10.1016/j.asej.2016.08.005.
  • B. Jha and M. Oni, “Natural convection flow in a vertical annulus with time-periodic thermal boundary conditions,” Propuls. Power Res., vol. 8, no. 1, pp. 47–55, 2019. DOI: 10.1016/j.jppr.2018.12.002.
  • P. Cheng, “Buoyancy induced boundary layer flows in geothermal reservoirs,” Presented at the Proceeding 2nd Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, California, Dec. 1–3, 1976, pp. 236–246.
  • M. K. Partha, “Nonlinear convection in a non-Darcy porous medium,” Appl. Math. Mech.-Engl. Ed., vol. 31, no. 5, pp. 565–574, 2010. DOI: 10.1007/s10483-010-0504-6.
  • B. K. Jha and G. Samaila, “Nonlinear approximation for natural convection and mass transfer in a vertical channel,” Heat Trans., vol. 51, no. 1, pp. 1092–1109, 2022. DOI: 10.1002/htj.22343.
  • B. K. Jha and M. O. Oni, “Nonlinear mixed convection flow in an inclined channel with time-periodic boundary conditions,” Int. J. Appl. Comput. Math., vol. 6, no. 5, pp. 129, 2020. DOI: 10.1007/s40819-020-00880-9.
  • B. K. Jha and G. Samaila, “Nonlinear approximation for natural convection flow near a vertical plate with thermal radiation effect,” J. Heat Transf., vol. 143, no. 7, pp. 074501, 2021.
  • K. Vajravelu and K. S. Sastri, “Fully developed laminar free convection flow between two parallel vertical walls—I,” Int. J. Heat Mass Transf., vol. 20, no. 6, pp. 655–660, 1977. DOI: 10.1016/0017-9310(77)90052-7.
  • M. S. Alam, M. M. Rahman, and M. A. Sattar, “Effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate in the presence of thermal radiation,” Int. J. Therm. Sci., vol. 47, no. 6, pp. 758–765, 2008. DOI: 10.1016/j.ijthermalsci.2007.06.006.
  • A. Selim, M. A. Hossain, and D. A. S. Rees, “The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis,” Int. J. Therm. Sci., vol. 42, no. 10, pp. 973–982, 2003. DOI: 10.1016/S1290-0729(03)00075-9.
  • B. K. Jha, B. Y. Isah and I. J. Uwanta, “Combined effect of suction/injection on MHD free-convection flow in a vertical channel with thermal radiation,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1069–1088, 2018. DOI: 10.1016/j.asej.2016.06.001.
  • M. A. Hossain, M. A. Alim and D. A. S. Rees, “The effect of radiation on free convection from a porous vertical plate,” Int. J. Heat Mass Transf., vol. 42, no. 1, pp. 181–191, 1999. DOI: 10.1016/S0017-9310(98)00097-0.
  • O. Aydın and A. Kaya, “MHD mixed convective heat transfer flow about an inclined plate,” Heat Mass Transf., vol. 46, no. 1, pp. 129–136, 2009. DOI: 10.1007/s00231-009-0551-4.
  • H. A. Agha, M. N. Bouaziz and S. Hanini, “Free convection boundary layer flow from a vertical flat plate embedded in a Darcy porous medium filled with a nanofluid: effects of magnetic field and thermal radiation,” Arab. J. Sci. Eng., vol. 39, no. 11, pp. 8331–8340, 2014. DOI: 10.1007/s13369-014-1405-z.
  • L. Talbot, R. K. Cheng, R. W. Schefer and D. R. Willis, “Thermophoresis of particles in a heated boundary layer,” J. Fluid Mech., vol. 101, no. 4, pp. 737–758, 1980. DOI: 10.1017/S0022112080001905.
  • G. K. Batchelor and C. Shen, “Thermophoretic deposition of particles in gas flowing over cold surfaces,” J. Colloid Interface Sci., vol. 107, no. 1, pp. 21–37, 1985. DOI: 10.1016/0021-9797(85)90145-6.
  • A. F. Mills, H. Xu and F. Ayazi, “The effect of wall suction and thermophoresis on aerosol particle deposition from a laminar boundary layer on a flat plate,” Int. J. Heat Mass Transf., vol. 27, no. 7, pp. 1110–1113, 1984. DOI: 10.1016/0017-9310(84)90127-3.
  • R. Tsai, “A simple approach for evaluating the effect of wall suction and thermophoresis on aerosol particle deposition from a laminar flow over a flat plate,” Int. Commun. Heat Mass Transf., vol. 26, no. 2, pp. 249–257, 1999. DOI: 10.1016/S0735-1933(99)00011-1.
  • A. Raptis, “Flow of a micropolar fluid past a continuously moving plate by the presence of radiation,” Int. J. Heat Mass Transf., vol. 41, no. 18, pp. 2865–2866, 1998. DOI: 10.1016/S0017-9310(98)00006-4.
  • H. A. M. El-Arabawy, “Effect of suction/injection on the flow of a micropolar fluid past a continuously moving plate in the presence of radiation,” Int. J. Heat Mass Transf., vol. 46, no. 8, pp. 1471–1477, 2003. DOI: 10.1016/S0017-9310(02)00320-4.
  • A. J. Chamkha, “Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink,” Int. J. Eng. Sci., vol. 38, no. 15, pp. 1699–1712, 2000. DOI: 10.1016/S0020-7225(99)00134-2.
  • M. M. Rahman and M. A. Sattar, “Magnetohydrodynamic convective flow of a micropolar fluid past a continuously moving vertical porous plate in the presence of heat generation/absorption,” J. Heat Transf. vol. 128, no. 2, pp. 142–152, 2006.
  • M. S. Alam, M. M. Rahman, and M. A. Samad, “Numerical study of the combined free-forced convection and mass transfer flow past a vertical porous plate in a porous medium with heat generation and thermal diffusion,” Nonlinear Anal. Model. Control, vol. 11, no. 4, pp. 331–343, 2006. DOI: 10.15388/NA.2006.11.4.14737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.