Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 4
120
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A second-order modular grad-div stabilized scheme for the Darcy–Brinkman model

&
Pages 205-226 | Received 19 Aug 2022, Accepted 30 Nov 2022, Published online: 03 Feb 2023

References

  • B. Goyeau, J. P. Songbe, and D. Gobin, “Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation,” Int. J. Heat Mass Transf., vol. 39, no. 7, pp. 1363–1378, 1996. DOI: 10.1016/0017-9310(95)00225-1.
  • A. Çıbık and S. Kaya, “Finite element analysis of a projection-based stabilization method for the Darcy-Brinkman equations in double-diffusive convection,” Appl. Numer. Math., vol. 64, pp. 35–49, 2013. DOI: 10.1016/j.apnum.2012.06.034.
  • O. V. Trevisan and A. Bejan, “Natural convection with combined heat and mass transfer buoyancy effects in a porous medium,” Int. J. Heat Mass Transf., vol. 28, no. 8, pp. 1597–1611, 1985. DOI: 10.1016/0017-9310(85)90261-3.
  • K. Ghorayeb and A. Mojtabi, “Double-diffusive convection in a vertical rectangular cavity,” Phys. Fluids, vol. 9, no. 8, pp. 2339–2348, 1997. DOI: 10.1063/1.869354.
  • A. J. Chamkha and H. Al-Nxaser, “Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients,” Int. J. Heat Mass Transf., vol. 45, no. 12, pp. 2465–2483, 2002. DOI: 10.1016/S0017-9310(01)00344-1.
  • R. W. Schmitt, “Double diffusion in oceanography,” Annu. Rev. Fluid Mech., vol. 26, no. 1, pp. 255–285, 1994. DOI: 10.1146/annurev.fl.26.010194.001351.
  • J. S. Turner, “Double-diffusive phenomena,” Annu. Rev. Fluid Mech., vol. 6, no. 1, pp. 37–54, 1974. DOI: 10.1146/annurev.fl.06.010174.000345.
  • M. Sheikholeslami and H. B. Rokni, “Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force,” Comput. Methods Appl. Mech. Eng., vol. 317, pp. 419–430, 2017. DOI: 10.1016/j.cma.2016.12.028.
  • T. L. Bergman and R. Srinivasan, “Numerical simulation of Soret-induced double diffusion in an initially uniform concentration binary liquid,” Int. J. Heat Mass Transf., vol. 32, no. 4, pp. 679–687, 1989. DOI: 10.1016/0017-9310(89)90215-9.
  • S. Chen, J. Tölke, and M. Krafczyk, “Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients,” Int. J. Heat Fluid Flow, vol. 31, no. 2, pp. 217–226, 2010. DOI: 10.1016/j.ijheatfluidflow.2009.12.013.
  • M. Mamou, P. Vasseur, and E. Bilgen, “A Galerkin finite-element study of the onset of double-diffusive convection in an inclined porous enclosure,” Int. J. Heat Mass Transf., vol. 41, no. 11, pp. 1513–1529, 1998. DOI: 10.1016/S0017-9310(97)00216-0.
  • J. Serrano-Arellano, M. Gijón-Rivera, J. M. Riesco-Ávila, and F. Elizalde-Blancas, “Numerical study of the double diffusive convection phenomena in a closed cavity with internal CO2 point sources,” Int. J. Heat Mass Transf., vol. 71, pp. 664–674, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.078.
  • Y. Yang and Y. Jiang, “An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection,” Numer. Algor., vol. 78, no. 2, pp. 569–597, 2018. DOI: 10.1007/s11075-017-0389-7.
  • C. Liao and P. Z. Huang, “The modified characteristics finite element method for time dependent Darcy-Brinkman problem,” Eng. Comput., vol. 36, no. 1, pp. 356–376, 2018. DOI: 10.1108/EC-05-2018-0223.
  • Y. H. Zeng, P. Z. Huang, and Y. N. He, “A time filter method for solving the double-diffusive natural convection model,” Comput. Fluids, vol. 235, pp. 105265, 2022.
  • Q. Shao, M. Fahs, A. Younes, and A. Makradi, “A high accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media,” Numer. Heat Transf. B-Fund., vol. 69, no. 1, pp. 26–47, 2016. DOI: 10.1080/10407790.2015.1081044.
  • R. March, A. Coutinho, and R. Elias, “Stabilized finite element simulation of double-diffusive natural convection,” Mecanica Comput., vol. 29, pp. 7985–8000, 2010.
  • A. Çıbık, M. Demir, and S. Kaya, “A family of second order time stepping methods for the Darcy-Brinkman equations,” J. Math. Anal. Appl., vol. 472, no. 1, pp. 148–175, 2019. DOI: 10.1016/j.jmaa.2018.11.015.
  • F. G. Eroglu, S. Kaya, and L. G. Rebholz, “POD-ROM for the Darcy-Brinkman equations with double-diffusive convection,” J. Numer. Math., vol. 27, no. 3, pp. 123–139, 2019. DOI: 10.1515/jnma-2017-0122.
  • M. A. Olshanskii and A. Reusken, “Grad-div stabilization for Stokes equations,” Math. Comput., vol. 73, no. 248, pp. 1699–1718, 2003. DOI: 10.1090/S0025-5718-03-01629-6.
  • E. W. Jenkins, V. John, A. Linke, and L. G. Rebholz, “On the parameter choice in grad-div stabilization for the Stokes equations,” Adv. Comput. Math., vol. 40, no. 2, pp. 491–516, 2014. DOI: 10.1007/s10444-013-9316-1.
  • A. L. Bowers, S. L. Borne, and L. G. Rebholz, “Error analysis and iterative solvers for Navier-Stokes projection methods with standard and sparse grad-div stabilization,” Comput. Methods Appl. Mech. Eng., vol. 275, pp. 1–19, 2014. DOI: 10.1016/j.cma.2014.02.021.
  • T. Heister and G. Rapin, “Efficient augmented Lagrangian-type preconditioner for the Oseen problem using grad-div stabilization,” Int. J. Numer. Meth. Fluids, vol. 71, no. 1, pp. 118–134, 2013. DOI: 10.1002/fld.3654.
  • X. L. Lu and P. Z. Huang, “A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations,” J. Sci. Comput., vol. 82, no. 1, pp. 3, 2020. DOI: 10.1007/s10915-019-01114-x.
  • A. Linke and L. G. Rebholz, “On a reduced sparsity stabilization of grad-div type for incompressible flow problems,” Comput. Methods Appl. Mech. Eng., vol. 261262, pp. 142–153, 2013. DOI: 10.1016/j.cma.2013.04.005.
  • W. Li, J. L. Fang, Y. Qin, and P. Z. Huang, “Rotational pressure-correction method for the Stokes/Darcy model based on the modular grad-div stabilization,” Appl. Numer. Math., vol. 160, pp. 451–465, 2021. DOI: 10.1016/j.apnum.2020.10.021.
  • W. Li, P. Z. Huang, and Y. N. He, “Grad-div stabilized finite element schemes for the fluid-fluid interaction model,” Commun. Comput. Phys., vol. 30, no. 2, pp. 536–566, 2021. DOI: 10.4208/cicp.OA-2020-0123.
  • Y. H. Zeng and P. Z. Huang, “A grad-div stabilized projection finite element method for a double-diffusive natural convection model,” Numer. Heat Transf. B: Fundam., vol. 78, no. 2, pp. 110–123, 2020. DOI: 10.1080/10407790.2020.1747285.
  • J. A. Fiordilino, W. Layton, and Y. Rong, “An efficient and modular grad-div stabilization,” Comput. Methods Appl. Mech. Eng., vol. 335, pp. 327–346, 2018. DOI: 10.1016/j.cma.2018.02.023.
  • Y. Rong and J. A. Fiordilino, “Numerical analysis of a BDF2 modular grad-div Stabilization method for the Navier-Stokes equations,” J. Sci. Comput., vol. 82, no. 3, pp. 66, 2020. DOI: 10.1007/s10915-020-01165-5.
  • R. Temam, “Navier-Stokes equations,” in Theory and Numerical Analysis, 3rd ed. Amsterdam: North-Holland, 1984.
  • C. Taylor and P. Hood, “A numerical solution of the Navier-Stokes equations using the finite element technique,” Comput. Fluids, vol. 1, no. 1, pp. 73–100, 1973. DOI: 10.1016/0045-7930(73)90027-3.
  • C. Liao, P. Z. Huang, and Y. N. He, “A decoupled finite element method with different time steps for the nonstationary Darcy-Brinkman problem,” J. Numer. Math., vol. 28, no. 1, pp. 33–62, 2020. DOI: 10.1515/jnma-2018-0080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.