Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 4
107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Performance analysis and reconstruction of interface capturing schemes for multiphase flows

ORCID Icon
Pages 227-242 | Received 22 Aug 2022, Accepted 04 Dec 2022, Published online: 03 Feb 2023

References

  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. DOI: 10.1016/0021-9991(88)90002-2.
  • P. R. Redapangu, S. P. Vanka and K. C. Sahu, “Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities,” Eur. J. Mech.-B/Fluids, vol. 34, pp. 105–114, 2012. DOI: 10.1016/j.euromechflu.2012.01.006.
  • J. Kim, “A diffuse-interface model for axisymmetric immiscible two-phase flow,” Appl. Math. Comput., vol. 160, no. 2, pp. 589–606, 2005. DOI: 10.1016/j.amc.2003.11.020.
  • M. Sussman and E. G. Puckett, “A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows,” J. Comput. Phys., vol. 162, no. 2, pp. 301–337, 2000. DOI: 10.1006/jcph.2000.6537.
  • S. P. Van der Pijl, A. Segal, C. Vuik and P. Wesseling, “A mass-conserving level-set method for modelling of multi-phase flows,” Int. J. Numer. Meth. Fluids, vol. 47, no. 4, pp. 339–361, 2005. DOI: 10.1002/fld.817.
  • T. Wang, H. Li, Y. Feng and D. Shi, “A coupled volume-of-fluid and level set (VOSET) method on dynamically adaptive quadtree grids,” Int. J. Heat Mass Transfer, vol. 67, pp. 70–73, 2013. DOI: 10.1016/S0031-8914(53)80099-6.
  • W. F. Noh and P. Woodward, “SLIC (simple line interface calculation),” Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede, pp. 330–340. Springer, 1976,
  • D. L. Youngs, “Time-dependent multi-material flow with large fluid distortion,” Numer. Methods Fluid Dyn, vol. 24, no. 2, pp. 273–285, 1982.
  • J. E. Pilliod, Jr and E. G. Puckett, “Second-order accurate volume-of-fluid algorithms for tracking material interfaces,” J. Comput. Phys., vol. 199, no. 2, pp. 465–502, 2004. DOI: 10.1016/j.jcp.2003.12.023.
  • H. Jasak and H. G. Weller, “Interface tracking capabilities of the inter-gamma differencing scheme.” Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, 1995.
  • V. R. Gopala and B. G. M. van Wachem, “Volume of fluid methods for immiscible-fluid and free-surface flows,” Chem. Eng. J., vol. 141, no. 1-3, pp. 204–221, 2008. DOI: 10.1016/j.cej.2007.12.035.
  • S. Muzaferija, M. Peric, P. Sames and T. Schellin, “A two-fluid Navier-Stokes solver to simulate water entry,” In Proceedings of the 22nd Symposium on Naval Hydrodynamics, Washington, DC, pp. 277–289, 1998.
  • O. Ubbink and R. I. Issa, “A method for capturing sharp fluid interfaces on arbitrary meshes,” J. Comput. Phys., vol. 153, no. 1, pp. 26–50, 1999. DOI: 10.1006/jcph.1999.6276.
  • M. Darwish and F. Moukalled, “Convective schemes for capturing interfaces of free-surface flows on unstructured grids,” Numer. Heat Transf., Part B: Fundam., vol. 49, no. 1, pp. 19–42, 2006. DOI: 10.1080/10407790500272137.
  • D. Zhang, C. Jiang, D. Liang, Z. Chen, Y. Yang and Y. Shi, “A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes,” J. Comput. Phys., vol. 274, pp. 709–736, 2014. DOI: 10.1016/j.jcp.2014.06.043.
  • Y. Y. Tsui, S. W. Lin, T. T. Cheng and T. C. Wu, “Flux-blending schemes for interface capture in two-fluid flows,” Int. J. Heat Mass Transf., vol. 52, no. 23–24, pp. 5547–5556, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.026.
  • F. Moukalled and M. Darwish, “Transient schemes for capturing interfaces of free-surface flows,” Numer. Heat Transf., Part B: Fundam., vol. 61, no. 3, pp. 171–203, 2012. DOI: 10.1080/10407790.2012.666145.
  • J. K. Patel and G. Natarajan, “A generic framework for design of interface capturing schemes for multi-fluid flows,” Comput. Fluids, vol. 106, pp. 108–118, 2015. DOI: 10.1016/j.compfluid.2014.10.005.
  • A. Arote, M. Bade and J. Banerjee, “An improved compressive volume of fluid scheme for capturing sharp interfaces using hybridization,” Numer. Heat Transf., Part B: Fundam., vol. 79, no. 1, pp. 29–53, 2020. DOI: 10.1080/10407790.2020.1793543.
  • C. K. Anghan, M. H. Bade and J. Banerjee, “A modified switching technique for advection and capturing of surfaces,” Appl. Math. Modell., vol. 92, pp. 349–379, 2021. DOI: 10.1016/j.apm.2020.10.038.
  • N. P. Waterson and H. Deconinck, “Design principles for bounded higher-order convection schemes-a unified approach,” J. Comput. Phys., vol. 224, no. 1, pp. 182–207, 2007. DOI: 10.1016/j.jcp.2007.01.021.
  • J. K. Patel and G. Natarajan, “A cost-effective curvature calculation approach for interfacial flows on unstructured meshes,” Int. J. Numer. Meth. Fluids, vol. 88, no. 7, pp. 347–362, 2018. DOI: 10.1002/fld.4671.
  • Lis libraries, 2013. Available: http://www.ssisc.org/lis.
  • P. L. Roe, “Characteristic-based schemes for the Euler equations,” Annu. Rev. Fluid Mech, vol. 18, no. 1, pp. 337–365, 1986. DOI: 10.1146/annurev.fl.18.010186.002005.
  • B. P. Leonard and H. S. Niknafs, “Sharp monotonic resolution of discontinuities without clipping of narrow extrema,” Comput. Fluids, vol. 19, no. 1, pp. 141–154, 1991. DOI: 10.1016/0045-7930(91)90011-6.
  • M. S. Darwish, “A new high-resolution scheme based on the normalized variable formulation,” Numer. Heat Transf., Part B: Fundam., vol. 24, no. 3, pp. 353–371, 1993. DOI: 10.1080/10407799308955898.
  • J. K. Patel and G. Natarajan, “A novel consistent and well–balanced algorithm for simulations of multiphase flows on unstructured grids,” J. Comput. Phys., vol. 350, pp. 207–236, 2017. DOI: 10.1016/j.jcp.2017.08.047.
  • J. Martin and W. Moyce, “Part iv. an experimental study of the collapse of liquid columns on a rigid horizontal plane,” Philos. Trans. Roy. Soc. London A: Math., Phys. Eng. Sci., vol. 244, no. 882, pp. 312–324, 1952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.