Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Entropy-based artificial dissipation as a corrective mechanism for numerical stability in convective heat transfer

&
Pages 1-23 | Received 01 Nov 2022, Accepted 25 Jan 2023, Published online: 01 Mar 2023

References

  • O. B. Adeyinka and G. F. Naterer, “Apparent entropy production difference with heat and fluid flow irreversibilities,” Numer. Heat Transf. Part B, vol. 42, no. 5, pp. 411–436, Nov. 2002. DOI: 10.1080/10407790190054012.
  • P. U. Ogban and G. F. Naterer, “Control volume finite element method for entropy generation minimization in mixed convection of nanofluids,” Numer. Heat Transf., Part B, vol. 75, no. 6, pp. 363–382, Jun. 2019. DOI: 10.1080/10407790.2019.1627797.
  • J. VonNeumann and R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys., vol. 21, no. 3, pp. 232–237, Mar. 1950. DOI: 10.1063/1.1699639.
  • R. D. Richtmyer, “A proposed method for the calculation of shocks,” Los Alamos Nat. Lab., Los Alamos: NM, LAMS 671, 1948.
  • M. L. Wilkins, Calculation of Elastic-Plastic Flow. California, NY: California University Livermore Radiation Lab, 1963.
  • M. L. Wilkins, “Use of artificial viscosity in multidimensional fluid dynamic calculations,” J. Comput. Phys., vol. 36, no. 3, pp. 281–303, Jul. 1980. DOI: 10.1016/0021-9991(80)90161-8.
  • J. Smagorinsky, “The beginnings of numerical weather prediction and general circulation modeling: Early recollections,” Adv. Geophys., vol. 25, pp. 3–37, Jan. 1983. DOI: 10.1016/S0065-2687(08)60170-3.
  • J. Smagorinsky, “General circulation experiments with the primitive equations: I, The basic experiment,” Mon. Wea. Rev., vol. 91, no. 3, pp. 99–164, Mar. 1963. DOI: 10.1175/1520-0493(1963)091 < 0099:GCEWTP>2.3.CO;2.
  • M. Nazarov and J. Hoffman, “Residual‐based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods,” Int. J. Numer. Meth. Fluids, vol. 71, no. 3, pp. 339–357, 2013. DOI: 10.1002/fld.3663.
  • J. Albright and M. Shashkov, “Locally adaptive artificial viscosity strategies for Lagrangian hydrodynamics,” Comput. Fluids, vol. 205, pp. 104580, Jun. 2020. DOI: 10.1016/j.compfluid.2020.104580.
  • G. E. Barter and D. L. Darmofal, “Shock capturing with PDE-based artificial viscosity for DGFEM: Part I, Formulation,” J. Comput. Phys., vol. 229, no. 5, pp. 1810–1827, Mar. 2010. DOI: 10.1016/j.jcp.2009.11.010.
  • R. Hartmann, “Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations,” Int. J. Numer. Meth. Fluids, vol. 51, no. 910, pp. 1131–1156, Jul. 2006. DOI: 10.1002/fld.1134.
  • T. V. Kolev and R. N. Rieben, “A tensor artificial viscosity using a finite element approach,” J. Comput. Phys., vol. 228, no. 22, pp. 8336–8366, Dec. 2009. DOI: 10.1016/j.jcp.2009.08.010.
  • P-O. Persson and J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods,” presented at the 44th AIAA Aerosp. Sci. Meeting Exhibit, 2006, p. 112.
  • H. Yucel, M. Stoll, and P. Benner, “Discontinuous Galerkin finite element methods with shock-capturing for nonlinear convection dominated models,” Comput. Chem. Eng., vol. 58, pp. 278–287, Nov. 2013. DOI: 10.1016/j.compchemeng.2013.07.011.
  • J. Reisner, J. Serencsa, and S. Shkoller, “A space–time smooth artificial viscosity method for nonlinear conservation laws,” J. Comput. Phys., vol. 235, pp. 912–933, Apr. 2013. DOI: 10.1016/j.jcp.2012.08.027.
  • M. A. E. Bouz, A. M. Ibrahim, M. M. Abdelsalam, and E. M. El-Said, “Entropy generation analysis and simulation of turbulent forced convection around tube with integral wake splitter using artificial neural network approach,” Alex. Eng. J., vol. 65, pp. 343–355, Oct. 2023. DOI: 10.1016/j.aej.2022.10.038.
  • J. L. Guermond, R. Pasquetti, and B. Popov, “Entropy viscosity for conservation equations,” presented at the V European Conf. Computational Fluid Dyn. (Eccomas CFD), Lisbon, 2010.
  • M. O. Delchini, J. C. Ragusa, and R. A. Berry, “Entropy viscosity method applied to euler equation,” Idaho Nat. Lab., ID, INL/CON-13-29941, 2013.
  • A. Chaudhuri, G. B. Jacobs, W. S. Don, H. Abbassi, and F. Mashayek, “Explicit discontinuous spectral element method with entropy generation based artificial viscosity for shocked viscous flows,” J. Comput. Phys., vol. 332, pp. 99–117, Mar. 2017. DOI: 10.1016/j.jcp.2016.11.042.
  • M. Sheikholeslami, M. I. Khan, Y. M. Chu, S. Kadry, and W. A. Khan, “CVFEM based numerical investigation and mathematical modeling of surface dependent magnetized copper‐oxide nanofluid flow using new model of porous space,” Numer. Methods Partial Differ. Equ., vol. 37, no. 2, pp. 1481–1494, Oct. 2021. DOI: 10.1002/num.22592.
  • Y. Q. Song et al., “Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model,” Alex. Eng. J., vol. 60, no. 5, pp. 4663–4675, Oct. 2021. DOI: 10.1016/j.aej.2021.03.056.
  • M. Ibrahim et al., “Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field,” Powder Technol., vol. 384, pp. 522–541, May 2021. DOI: 10.1016/j.powtec.2021.01.077.
  • P. Y. Xiong et al., “Nanomaterial transportation and exergy loss modeling incorporating CVFEM,” J. Mol. Liq., vol. 330, pp. 115591, May 2021. DOI: 10.1016/j.molliq.2021.115591.
  • G. F. Naterer and J. A. Camberos, Entropy–Based Analysis and Design of Fluids Engineering Systems. Boca Raton, FL: CRC, 2008.
  • R. A. Cox and B. M. Argrow, “Entropy production in finite-difference schemes,” AIAA J., vol. 31, no. 1, pp. 210–211, Jan. 1993. DOI: 10.2514/3.11343.
  • G. F. Naterer, “Constructing an entropy-stable upwind scheme for compressible fluid flow computations,” AIAA J., vol. 37, no. 3, pp. 303–312, Mar. 1999. DOI: 10.2514/2.731.
  • P. U. Ogban and G. F. Naterer, “Apparent entropy production difference for error characterization in numerical heat transfer,” J. Thermophys. Heat Transf., vol. 34, no. 3, pp. 659–668. Apr. 2020. DOI: 10.2514/1.t5894.
  • A. Bejan, Convection Heat Transfer. Hoboken, NJ: JWS, 2013.
  • G. F. Naterer, Advanced Heat Transfer, 3rd ed., Boca Raton, FL: CRC, 2022.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: CRC, 1980.
  • G. E. Schneider and M. J. Raw, “A skewed, positive influence coefficient upwinding procedure for control-volume-based finite element convection-diffusion computation,” Numer. Heat Transf., vol. 9, pp. 1–26, Jan. 2007. DOI: 10.1080/10407788608913462.
  • C.-C. Cho, C.-L. Chen, and C.-K. Chen, “Natural convection heat transfer and entropy generation in wavy-wall enclosure containing water-based nanofluid,” Int. J. Heat Mass Transf., vol. 61, pp. 749–758, Jun. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.044.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 46, no. 19, pp. 3639–3653, Sept. 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • M. S. Engelman, FIDAP theoretical manual-revision 4.0. Evanston, IL: Fluid Dynamics Inc., 1987.
  • R. J. Krane and J. Jessee, “Some detailed field measurements for a natural convection flow in a vertical square enclosure,” presented at the Proc. 1983 First ASME-JSME Therm. Eng. Conf., Honolulu, 1983, pp. 323–329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.