Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
151
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study of heat transfer between hot moving material and ambient medium using various hybrid nanofluids under MHD radiative-convection, viscous dissipation effects, and time-fractional condition

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 24-49 | Received 08 Sep 2022, Accepted 29 Jan 2023, Published online: 19 May 2023

References

  • S. Kakac, W. Aung, and R. Viskanta, Natural convection: Fundamentals and applications. 1985. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1985wdch.bookQ….K/abstract. Accessed: Jul. 03, 2021.
  • M. Kaviany, Principles of Convective Heat Transfer. New York, NY, USA: Springer New York, 2001. DOI: 10.1007/978-1-4757-3488-1.
  • H. Schlichting and K. Gersten, Boundary-Layer Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. DOI: 10.1007/978-3-662-52919-5.
  • G. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,” in Mathematical and Physical Papers, vol. 13, no. 189. Cambridge: Cambridge University Press, 1927, pp. 1–10. DOI: 10.1017/CBO9780511702266.002.
  • K. Stewartson, “On the impulsive motion of a flat plate in a viscous fluid,” Q. J. Mech. Appl. Math., vol. 4, no. 2, pp. 182–198, 1951. DOI: 10.1093/qjmam/4.2.182.
  • V. M. Soundalgekar, S. K. Gupta, and R. N. Aranake, “Free convection effects on MHD Stokes problem for a vertical plate,” Nucl. Eng. Des., vol. 51, no. 3, pp. 403–407, Feb. 1979. DOI: 10.1016/0029-5493(79)90127-4.
  • J. B. Kumar and A. K. Singh, “Soret effects on free-convection and mass transfer flow in the Stokes problem for a infinite vertical plate,” Astrophys. Space Sci., vol. 173, no. 2, pp. 251–255, Nov. 1990. DOI: 10.1007/BF00643934.
  • R. Muthucumaraswamy, P. Ganesan, and V. M. Soundalgekar, “Heat and mass transfer effects on flow past an impulsively started vertical plate,” Acta Mech., vol. 146, no. 1–2, pp. 1–8, 2001. DOI: 10.1007/BF01178790.
  • R. Muthucumaraswamy and A. Vijayalakshmi, “Radiation effects on flow past an impulsively started vertical plate with variable temperature and mass flux,” Theor. Appl. Mech., vol. 32, no. 3, pp. 223–234, 2005. DOI: 10.2298/tam0503223m.
  • G. Palani and I. A. Abbas, “Free convection MHD flow with thermal radiation from an impulsively-started vertical plate,” Nonlinear Anal. Model. Control, vol. 14, no. 1, pp. 73–84, Jan. 2009. DOI: 10.15388/NA.2009.14.1.14531.
  • G. S. Seth, M. S. Ansari, and R. Nandkeolyar, “MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature,” Heat Mass Transf., vol. 47, no. 5, pp. 551–561, May 2011. DOI: 10.1007/s00231-010-0740-1.
  • S. Das, C. Mandal, and R. N. Jana, “Radiation effects on unsteady free convection flow past a vertical plate with newtonian heating,” Int. J. Comput. Appl., vol. 41, no. 13, pp. 36–41, Mar. 2012. DOI: 10.5120/5605-7864.
  • V. Rajesh and A. J. Chamkha, “Unsteady convective flow past an exponentially accelerated infinite vertical porous plate with Newtonian heating and viscous dissipation,” Int. J. Numer. Methods Heat Fluid Flow, vol. 24, no. 5, pp. 1109–1123, 2014. DOI: 10.1108/HFF-05-2012-0122.
  • P. Loganathan and C. Sivapoornapriya, “Unsteady heat and mass transfer effects on an impulsively started infinite vertical plate in the presence of porous medium,” Int. J. Heat Technol., vol. 33, no. 2, pp. 69–74, 2015. DOI: 10.18280/ijht.330211.
  • M. V. Krishna, K. Jyothi, and A. J. Chamkha, “Heat and mass transfer on unsteady, magnetohydrodynamic, oscillatory flow of second-grade fluid through a porous medium between two vertical plates, under the influence of fluctuating heat source/SINK, and chemical reaction,” Int. J. Fluid Mech. Res., vol. 45, no. 5, pp. 459–477, 2018. DOI: 10.1615/InterJFluidMechRes.2018024591.
  • M. V. Krishna, K. Jyothi, and A. J. Chamkha, “Heat and mass transfer on MHD flow of second-grade fluid through porous medium over a semi-infinite vertical stretching sheet,” J. Porous Media, vol. 23, no. 8, pp. 751–765, 2020. DOI: 10.1615/JPorMedia.2020023817.
  • M. V. Krishna and K. Vajravelu, “Hall effects on the unsteady MHD flow of the Rivlin–Ericksen fluid past an infinite vertical porous plate,” Waves Random Complex Media, pp. 1–24, Jun. 2022. DOI: 10.1080/17455030.2022.2084178.
  • M. V. Krishna, P. V. S. Anand, and A. J. Chamkha, “Heat and mass transfer on free convective flow of amicropolar fluid through a porous surface with inclined magnetic field and hall effects,” Spec. Top. Rev. Porous Media, vol. 10, no. 3, pp. 203–223, 2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2018026943.
  • M. V. Krishna, B. V. Swarnalathamma, and A. J. Chamkha, “Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate,” J. Ocean Eng. Sci., vol. 4, no. 3, pp. 263–275, 2019. DOI: 10.1016/j.joes.2019.05.002.
  • M. Veera Krishna, N. Ameer Ahamad, and A. J. Chamkha, “Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate,” Alex. Eng. J., vol. 59, no. 2, pp. 565–577, 2020. DOI: 10.1016/j.aej.2020.01.043.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium,” Int. Commun. Heat Mass Transf., vol. 113, pp. 104494, Feb. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104494.
  • M. V. Krishna and A. J. Chamkha, “MHD peristaltic rotating flow of a couple stress fluid through a porous medium withwall and slip effects,” Spec. Top. Rev. Porous Media, vol. 10, no. 3, pp. 245–258, 2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2019028609.
  • A. K. Jha, P. Shukla, and P. Ghosh, “Free convection boundary layer correlations for a vertical plate with nonuniform heating,” Numer. Heat Transf. Part B Fundam., vol. 82, no. 6, pp. 1–13, Aug. 2022. DOI: 10.1080/10407790.2022.2104564.
  • M. Veera Krishna, “Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104927, Oct. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104927.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on magnetohydrodynamic convective rotating flow of Jeffreys fluid over an impulsively moving vertical plate embedded in a saturated porous medium with Ramped wall temperature,” Numer. Methods Partial Differ. Equ., vol. 37, no. 3, pp. 2150–2177, 2021. DOI: 10.1002/num.22670.
  • M. V. Krishna, “Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105399, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105399.
  • A. J. Chamkha, S. K. Jena, and S. K. Mahapatra, “MHD convection of nanofluids: A review,” J. Nanofluids, vol. 4, no. 3, pp. 271–292, 2015. DOI: 10.1166/jon.2015.1166.
  • M. Turkyilmazoglu and I. Pop, “Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect,” Int. J. Heat Mass Transf., vol. 59, no. 1, pp. 167–171, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.009.
  • P. Loganathan, P. Nirmal Chand, and P. Ganesan, “Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate,” Nano, vol. 8, no. 1, pp. 1–10, 2013. DOI: 10.1142/S179329201350001X.
  • P. V. Satya Narayana, B. Venkateswarlu and S. Venkataramana, “Thermal radiation and heat source effects on a MHD nanofluid past a vertical plate in a rotating system with porous medium,” Heat Transf. Res., vol. 44, no. 1, pp. 1–19, Jan. 2015. DOI: 10.1002/htj.21101.
  • R. Vemula, A. J. Chamkha, and M. P. Mallesh, “Nanofluid flow past an impulsively started vertical plate with variable surface temperature,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 328–347, Jan. 2016. DOI: 10.1108/HFF-07-2014-0209.
  • V. Rajesh, A. J. Chamkha, and M. P. Mallesh, “Transient MHD free convection flow and heat transfer of nanofluid past an impulsively started semi-infinite vertical plate,” J. Appl. Fluid Mech., vol. 9, no. 5, pp. 2457–2467, 2016. DOI: 10.18869/acadpub.jafm.68.236.23443.
  • K. Kumaraswamy Naidu, D. Harish Babu, S. Harinath Reddy, and P. V. Satya Narayana, “Radiation and partial slip effects on magnetohydrodynamic jeffrey nanofluid containing gyrotactic microorganisms over a stretching surface,” J. Therm. Sci. Eng. Appl., vol. 13, no. 3, pp. 1–11, 2021. DOI: 10.1115/1.4048213.
  • P. Rana, B. Mahanthesh, J. Mackolil and W. Al-Kouz, “Nanofluid flow past a vertical plate with nanoparticle aggregation kinematics, thermal slip and significant buoyancy force effects using modified Buongiorno model,” Waves Random Complex Media, pp. 1–25, Sep. 2021. DOI: 10.1080/17455030.2021.1977416.
  • L. Jino and A. V. Kumar, “Fluid flow and heat transfer analysis of quadratic free convection in a nanofluid filled porous cavity,” Int. J. Heat Technol., vol. 39, no. 3, pp. 876–884, Jun. 2021. DOI: 10.18280/ijht.390322.
  • L. Jino and A. V. Kumar, “Cu-water nanofluid MHD quadratic natural convection on square porous cavity,” Int. J. Appl. Comput. Math., vol. 7, no. 4, pp. 164, Aug. 2021. DOI: 10.1007/s40819-021-01103-5.
  • P. V. Satya Narayana, N. Tarakaramu, G. Sarojamma, and I. L. Animasaun, “Numerical simulation of nonlinear thermal radiation on the 3D flow of a couple stress Casson nanofluid due to a stretching sheet,” J. Therm. Sci. Eng. Appl., vol. 13, no. 2, pp. 1–10, 2021. DOI: 10.1115/1.4049425.
  • P. V. Satya Narayana, N. Tarakaramu, and D. Harish Babu, “Influence of chemical reaction on MHD couple stress nanoliquid flow over a bidirectional stretched sheet,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 4928–4938, 2022. DOI: 10.1080/01430750.2021.1923569.
  • M. Veera Krishna and A. J. Chamkha, “Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium,” Res. Phys., vol. 15, no. 1, pp. 102652–102673. Apr. 2019. DOI: 10.1016/j.rinp.2019.102652.
  • A. V. Kumar, J. Lawrence, and G. Saravanakumar, “Fluid friction/heat transfer irreversibility and heat function study on MHD free convection within the MWCNT–water nanofluid‐filled porous cavity,” Heat Transf., vol. 51, no. 5, pp. 4247–4267, Jul. 2022. DOI: 10.1002/htj.22498.
  • M. A. Kumar, Y. D. Reddy, V. S. Rao, and B. S. Goud, “Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate,” Case Stud. Therm. Eng., vol. 24, pp. 100826, Apr. 2021. DOI: 10.1016/j.csite.2020.100826.
  • W. H. Huang et al., “Numerical study of heat transfer and friction drag in MHD viscous flow of a nanofluid subject to the curved surface,” Waves Random Complex Media, pp. 1–16, Sep. 2021. DOI: 10.1080/17455030.2021.1978592.
  • K. V. Wong and O. D. Leon, “Applications of nanofluids: Current and future,” in Advances in Mechanical Engineering. UK, London, England: SAGE Publications, 2010. DOI: 10.1155/2010/519659.
  • M. A. Sheremet, “Applications of nanofluids,” Nanomaterials, vol. 11, no. 7, pp. 1716, Jun. 2021. DOI: 10.3390/nano11071716.
  • P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa, and S. Zinya, “Synthetic methods for titanium dioxide nanoparticles: A review,” Titanium Dioxide - Material for a Sustainable Environment, no.8, pp. 151–175, Nov. 2018. DOI: 10.5772/intechopen.75425.
  • D. Ziental et al., “Titanium dioxide nanoparticles: Prospects and applications in medicine,” Nanomaterials, vol. 10, no. 2, 2020. DOI: 10.3390/nano10020387.
  • H. M. Ali, Hybrid Nanofluids for Convection Heat Transfer. USA: Elsevier, 2020. DOI: 10.1016/c2018-0-04602-2.
  • L. Jino and A. V. Kumar, “MHD natural convection of hybrid nanofluid in a porous cavity heated with a sinusoidal temperature distribution,” Comput. Therm. Sci., vol. 13, no. 5, pp. 83–99, 2021. DOI: 10.1615/computthermalscien.2021037663.
  • T. K. Tullius and Y. Bayazitoglu, “Analysis of a hybrid nanofluid exposed to radiation,” Numer. Heat Transf. Part B Fundam., vol. 69, no. 4, pp. 271–286, 2016. DOI: 10.1080/10407790.2015.1104210.
  • B. Venkateswarlu and P. V. Satya Narayana, “Cu‐Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue‐dependent viscosity and viscous dissipation,” Heat Transf., vol. 50, no. 1, pp. 432–449, Jan. 2021. DOI: 10.1002/htj.21884.
  • N. Manaa, A. Abidi, A. Saleel, C. J. Madiouli, and M. N. Borjini, “Three-dimensional numerical analysis on performance enhancement of micropolar hybrid nanofluid in comparison with simple nanofluid,” Heat Transf. Eng., vol. 42, no. 18, pp. 1590–1610, 2021. DOI: 10.1080/01457632.2020.1807106.
  • F. Mabood, G. P. Ashwinkumar, and N. Sandeep, “Effect of nonlinear radiation on 3D unsteady MHD stagnancy flow of Fe3O4/graphene–water hybrid nanofluid,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 3385–3395, 2022. DOI: 10.1080/01430750.2020.1831593.
  • M. R. Eid and A. F. Al-Hossainy, “Combined experimental thin film, DFT-TDDFT computational study, flow and heat transfer in [PG-MoS2/ZrO2]C hybrid nanofluid,” Waves Random Complex Media, 2021. DOI: 10.1080/17455030.2021.1873455.
  • K. Chadi et al., “Impact of geometric shape of cavity on heat exchange using Cu-Al2O3-H2O hybrid nanofluid,” Waves Random Complex Media, pp. 1–18, Oct. 2022. DOI: 10.1080/17455030.2022.2134606.
  • K. Muhammad, T. Hayat, A. Alsaedi, B. Ahmad, and S. Momani, “Mixed convective slip flow of hybrid nanofluid (MWCNTs + Cu + Water), nanofluid (MWCNTs + Water) and base fluid (Water): A comparative investigation,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1523–1536, 2021. DOI: 10.1007/s10973-020-09577-z.
  • A. Mahdy, E. R. El-Zahar, A. M. Rashad, W. Saad, and H. S. Al-Juaydi, “The magneto-natural convection flow of a micropolar hybrid nanofluid over a vertical plate saturated in a porous medium,” Fluids, vol. 6, pp. 202, May 2021. DOI: 10.3390/fluids6060202.
  • U. Khan, A. Zaib, A. B. Sakhinah, and A. Ishak, “Hybrid nanofluid flow with quadratic velocity and thermal slip over a permeable stretching/shrinking surface,” Waves Random Complex Media, pp. 1–18, Oct. 2022. DOI: 10.1080/17455030.2022.2119302.
  • R. Hilfer, Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000. DOI: 10.1142/3779.
  • T. M. Atanackovic, S. Pilipovic, B. Stankovic, and D. Zorica, Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. USA: John Wiley & Sons, 2014. DOI: 10.1002/9781118909065.
  • D. Valério, J. T. Machado, and V. Kiryakova, “Some pioneers of the applications of fractional calculus,” Fract. Calculus Appl. Anal., vol. 17, no. 2, pp. 552–578, Mar. 2014. DOI: 10.2478/s13540-014-0185-1.
  • N. Laskin, Fractional Quantum Mechanics. Singapore: World Scientific, 2018. DOI: 10.1142/10541.
  • D. A. Murio, “Implicit finite difference approximation for time fractional diffusion equations,” Comput. Math. Appl., vol. 56, no. 4, pp. 1138–1145, 2008. DOI: 10.1016/j.camwa.2008.02.015.
  • M. Onal and A. Esen, “A Crank-Nicolson approximation for the time fractional burgers equation,” Appl. Math. Nonlinear Sci., vol. 5, no. 2, pp. 177–184, 2020. DOI: 10.2478/amns.2020.2.00023.
  • B. Shen, L. Zheng, and S. Chen, “Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface,” AIP Adv., vol. 5, no. 10, 2015. DOI: 10.1063/1.4934796.
  • D. Vieru, C. Fetecau, and C. Fetecau, “Time-fractional free convection flow near a vertical plate with newtonian heating and mass diffusion,” Therm. Sci., vol. 19, no. suppl. 1, pp. 85–98, 2015. DOI: 10.2298/TSCI15S1S85V.
  • M. A. Imran, I. Khan, M. Ahmad, N. A. Shah, and M. Nazar, “Heat and mass transport of differential type fluid with non-integer order time-fractional caputo derivatives,” J. Mol. Liq., vol. 229, pp. 67–75, 2017. DOI: 10.1016/j.molliq.2016.11.095.
  • W. A. Azhar, D. Vieru, and C. Fetecau, “Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source,” Phys. Fluids, vol. 29, no. 8, pp. 082001, Aug. 2017. DOI: 10.1063/1.4996034.
  • K. A. Abro, A. D. Chandio, I. A. Abro, and I. Khan, “Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium,” J. Therm. Anal. Calorim., vol. 135, no. 4, pp. 2197–2207, 2019. DOI: 10.1007/s10973-018-7302-z.
  • S. Sarwar, M. Nazar, and M. A. Imran, “Influence of slip over an exponentially moving vertical plate with Caputo-time fractional derivative,” J. Therm. Anal. Calorim., vol. 145, no. 1, pp. 2707–2717, May 2020. DOI: 10.1007/s10973-020-09700-0.
  • S. Doley, A. V. Kumar, and L. Jino, “Time fractional transient magnetohydrodynamic natural convection of hybrid nanofluid flow over an impulsively started vertical plate,” Comput. Therm. Sci., vol. 14, no. 3, pp. 59–82, 2022. DOI: 10.1615/ComputThermalScien.2022041607.
  • N. A. Shah, J. D. Chung, N. A. Ahammad, D. Vieru, and S. Younas, “Thermal analysis of unsteady convective flows over a vertical cylinder with time-dependent temperature using the generalized Atangana–Baleanu derivative,” Chin. J. Phys., vol. 77, pp. 1431–1449, Jun. 2022. DOI: 10.1016/j.cjph.2021.10.013.
  • P. Zhuang and F. Liu, “Implicit difference approximation for the time fractional diffusion equation,” J. Appl. Math. Comput., vol. 22, no. 3, pp. 87–99, Oct. 2006. DOI: 10.1007/BF02832039.
  • J. Lawrence and V. K. Alagarsamy, “Mathematical modelling of MHD natural convection in a linearly heated porous cavity,” Math. Model. Eng. Probl., vol. 8, no. 1, pp. 149–157, Feb. 2021. DOI: 10.18280/mmep.080119.
  • H. Hassani and E. Naraghirad, “A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation,” Math. Comput. Simul., vol. 162, pp. 1–17, 2019. DOI: 10.1016/j.matcom.2019.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.