Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
276
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Entropy generation analysis in MHD hybrid nanofluid flow: Effect of thermal radiation and chemical reaction

ORCID Icon & ORCID Icon
Pages 66-82 | Received 16 Nov 2022, Accepted 19 Feb 2023, Published online: 03 Apr 2023

References

  • J. C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1. Oxford: Clarendon press, 1873,
  • H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles,” Japan J. Thermophysical Properties, vol. 7, no. 4, pp. 227–233, 1993. DOI: 10.2963/jjtp.7.227.
  • S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 99–105, 1995.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • S. Suresh, K. Venkitaraj, P. Selvakumar and M. Chandrasekar, “Synthesis of Al2O3 – Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids Surfaces A: Physicochemical Engineering Aspects, vol. 388, no. 1, pp. 41–48, 2011.
  • J. Sarkar, P. Ghosh and A. Adil, “A review on hybrid nanofluids: Recent research, development and applications,” Renewable Sustainable Energy Reviews, vol. 43, pp. 164–177, 2015. DOI: 10.1016/j.rser.2014.11.023.
  • M. Hassan, M. Marin, R. Ellahi and S. Z. Alamri, “Exploration of convective heat transfer and flow characteristics synthesis by Cu – Ag/water hybrid-nanofluids,” Heat Trans Res, vol. 49, no. 18, pp. 1837–1848, 2018. DOI: 10.1615/HeatTransRes.2018025569.
  • Y.-M. Chu, R. Kumar and Q.-V. Bach, “Water-based nanofluid flow with various shapes of al2o3 nanoparticles owing to mhd inside a permeable tank with heat transfer,” APPl. Nanoscience, vol. 13, pp. 2653–2664, 2020.
  • M. Khan, W. Ali and J. Ahmed, “A hybrid approach to study the influence of hall current in radiative nanofluid flow over a rotating disk,” Appl Nanosci, vol. 10, no. 12, pp. 5167–5177, 2020. DOI: 10.1007/s13204-020-01415-w.
  • J. Madhukesh, G. Ramesh, M. Alsulami and B. Prasannakumara, “Characteristic of thermophoretic effect and convective thermal conditions on flow of hybrid nanofluid over a moving thin needle,” Waves in Random and Complex Media, pp. 1–23, 2021. DOI: 10.1080/17455030.2021.2012303.
  • N. S. Anuar, N. Bachok and I. Pop, “Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet,” HFF, vol. 31, no. 3, pp. 914–932, 2021. DOI: 10.1108/HFF-03-2020-0149.
  • R. N. Kumar, F. Gamaoun, A. Abdulrahman, J. S. Chohan and R. P. Gowda, “Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study,” Int. J. Mod. Phys. B, vol. 36, no. 25, pp. 2250170, 2022. DOI: 10.1142/S0217979222501703.
  • K. Govindarajulu and A. Subramanyam Reddy, “Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with ohmic heating and thermal radiation effects,” Physics Fluids, vol. 34, no. 1, pp. 013105, 2022. DOI: 10.1063/5.0074894.
  • Y.-M. Chu, U. Nazir, M. Sohail, M. M. Selim and J.-R. Lee, “Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach,” Fractal Fract, vol. 5, no. 3, pp. 119, 2021. DOI: 10.3390/fractalfract5030119.
  • M. Ibrahim, T. Saeed, F. R. Bani, S. N. Sedeh, Y.-M. Chu and D. Toghraie, “Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field,” Powder Technology, vol. 384, pp. 522–541, 2021. DOI: 10.1016/j.powtec.2021.01.077.
  • L. Qin, S. Ahmad, M. N. Khan, N. A. Ahammad, F. Gamaoun and A. M. Galal, “Thermal and solutal transport analysis of blasius–rayleigh–stokes flow of hybrid nanofluid with convective boundary conditions,” Waves in Random and Complex Media, pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2072018.
  • K. Sarada, et al., “Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-fourier heat flux model,” Case Stud. Thermal Engineering, vol. 38, pp. 102332, 2022. DOI: 10.1016/j.csite.2022.102332.
  • N. Vijay and K. Sharma, “Magnetohydrodynamic hybrid nanofluid flow over a decelerating rotating disk with soret and dufour effects,” MMMS, vol. 19, no. 2, pp. 253–276, 2023. DOI: 10.1108/MMMS-08-2022-0160.
  • V. T. Karman, “Uber laminare und turbulente reibung,” Z. angew. Math. Mech, vol. 1, no. 4, pp. 233–252, 1921. DOI: 10.1002/zamm.19210010401.
  • H. Andersson, E. De Korte and R. Meland, “Flow of a power-law fluid over a rotating disk revisited,” Fluid Dyn. Res, vol. 28, no. 2, pp. 75–88, 2001. DOI: 10.1016/S0169-5983(00)00018-6.
  • M. Turkyilmazoglu, “Mhd fluid flow and heat transfer due to a shrinking rotating disk,” Computers & Fluids, vol. 90, pp. 51–56, 2014. DOI: 10.1016/j.compfluid.2013.11.005.
  • A. Mushtaq and M. Mustafa, “Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions,” Results in Physics, Vol, vol. 7, pp. 3137–3144, 2017. DOI: 10.1016/j.rinp.2017.08.031.
  • K. Sharma, N. Vijay and S. Kumar, “Significance of geothermal viscosity and heat generation/absorption on magnetic nanofluid flow and heat transfer,” Numerical Heat Transfer, Part A: Applications, vol. 82, no. 3, pp. 70–81, 2022. DOI: 10.1080/10407782.2022.2066921.
  • N. Vijay and K. Sharma, “Heat and mass transfer study of ferrofluid flow between co-rotating stretchable disks with geothermal viscosity: Ham analysis,” Chinese J. Physics, vol. 78, pp. 83–95, 2022. DOI: 10.1016/j.cjph.2022.05.014.
  • N. Vijay and K. Sharma, “Dynamics of stagnation point flow of maxwell nanofluid with combined heat and mass transfer effects: A numerical investigation,” Int. Commun. Heat Mass Transfer, vol. 141, pp. 106545, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106545.
  • N. Acharya, S. Maity and P. K. Kundu, “Framing the hydrothermal features of magnetized TiO2 – CoFe2O4 water-based steady hybrid nanofluid flow over a radiative revolving disk,” Multidiscipline Modeling Materials Structures, vol. 16, no. 4, pp. 765–790, 2019.
  • H. Vaidya, et al., “Channel flow of mhd bingham fluid due to peristalsis with multiple chemical reactions: An application to blood flow through narrow arteries,” SN Appl. Sci, vol. 3, no. 2, pp. 1–12, 2021. DOI: 10.1007/s42452-021-04143-0.
  • K. Sharma, N. Vijay, S. Kumar and R. Mehta, “Heat and mass transfer study of hydrocarbon based magnetic nanofluid (c1-20b) with geothermal viscosity,” Proc. Institution Mech. Engineers, Part E: J. Process Mech. Engineering, 2022. DOI: 10.1177/09544089221079949.
  • J. Umavathi, et al., “Magnetohydrodynamic squeezing casson nanofluid flow between parallel convectively heated disks,” Int. J. Mod. Phys. B, vol. 37, no. 04, pp. 2350031, 2023. DOI: 10.1142/S0217979223500315.
  • R. P. Gowda, A. Rauf, R. Naveen Kumar, B. Prasannakumara and S. Shehzad, “Slip flow of casson–maxwell nanofluid confined through stretchable disks,” Indian J Phys, vol. 96, no. 7, pp. 2041–2049, 2022. DOI: 10.1007/s12648-021-02153-7.
  • A. Bejan, “Second law analysis in heat transfer,” Energy, vol. 5, no. 8-9, pp. 720–732, 1980. DOI: 10.1016/0360-5442(80)90091-2.
  • A. Arikoglu, G. Komurgoz and I. Ozkol, “Effect of slip on the entropy generation from a single rotating disk,” J. fluids Engineering, vol. 130, no. 10, pp. 101202, 2008. DOI: 10.1115/1.2953301.
  • S. Qayyum, M. I. Khan, T. Hayat, A. Alsaedi and M. Tamoor, “Entropy generation in dissipative flow of williamson fluid between two rotating disks,” Int. J. Heat Mass Transfer, vol. 127, pp. 933–942, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.08.034.
  • F. Shah, M. I. Khan, Y.-M. Chu and S. Kadry, “Heat transfer analysis on mhd flow over a stretchable riga wall considering entropy generation rate: A numerical study,” Numer Methods Partial Differential Eq, pp. 1–17, 2020. DOI: 10.1002/num.22694.
  • M. I. Khan, “Transportation of hybrid nanoparticles in forced convective darcy-forchheimer flow by a rotating disk,” Int. Commun. Heat Mass Transfer, vol. 122, pp. 105177, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105177.
  • T. Zhao, M. Khan, Y. Chu, A. Issakhov, R. Ali and S. Khan, “Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid,” Appl. Math. Mech.-Engl. Ed, vol. 42, no. 8, pp. 1205–1218, 2021. DOI: 10.1007/s10483-021-2759-5.
  • M. Kumar and P. K. Mondal, “Irreversibility analysis of hybrid nanofluid flow over a rotating disk: Effect of thermal radiation and magnetic field,” Colloids Surfaces A: Physicochemical Engineering Aspects, vol. 635, pp. 128077, 2022. DOI: 10.1016/j.colsurfa.2021.128077.
  • M. Rashidi, M. Ali, N. Freidoonimehr and F. Nazari, “Parametric analysis and optimization of entropy generation in unsteady mhd flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm,” Energy, vol. 55, pp. 497–510, 2013. DOI: 10.1016/j.energy.2013.01.036.
  • T.-H. Zhao, M. I. Khan and Y.-M. Chu, “Artificial neural networking (ann) analysis for heat and entropy generation in flow of non-newtonian fluid between two rotating disks,” Math. Methods APPl. Sciences, vol. 46, no. 3, pp. 3012–3030, 2021.
  • M. W. A. Khan, M. I. Khan, T. Hayat and A. Alsaedi, “Numerical solution of mhd flow of power law fluid subject to convective boundary conditions and entropy generation,” Computer Methods Programs Biomedicine, vol. 188, pp. 105262, 2020. DOI: 10.1016/j.cmpb.2019.105262.
  • S. M. Seyyedi, A. Dogonchi, M. Hashemi-Tilehnoee, M. Waqas and D. Ganji, “Entropy generation and economic analyses in a nanofluid filled l-shaped enclosure subjected to an oriented magnetic field,” APPl. Thermal Engineering, vol. 168, pp. 114789, 2020. DOI: 10.1016/j.applthermaleng.2019.114789.
  • A. Kumar, R. K. Ray and M. A. Sheremet, “Entropy generation on double-diffusive mhd slip flow of nanofluid over a rotating disk with nonlinear mixed convection and arrhenius activation energy,” Indian J Phys, vol. 96, no. 2, pp. 525–541, 2022. DOI: 10.1007/s12648-021-02015-2.
  • S. Saleem, et al., “Modelling entropy in magnetized flow of eyring–powell nanofluid through nonlinear stretching surface with chemical reaction: A finite element method approach,” Nanomaterials, vol. 12, no. 11, pp. 1811, 2022. DOI: 10.3390/nano12111811.
  • T. Rafiq and M. Mustafa, “Computational analysis of unsteady swirling flow around a decelerating rotating porous disk in nanofluid,” Arab J Sci Eng, vol. 45, no. 2, pp. 1143–1154, 2020. DOI: 10.1007/s13369-019-04257-z.
  • K. Sharma, N. Vijay, F. Mabood and I. Badruddin, “Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties,” Int. Commun. Heat Mass Transfer, vol. 133, pp. 105977, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105977.
  • M. I. Khan, A. Alsaedi, T. Hayat and N. B. Khan, “Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation,” Computer Methods Programs Biomedicine, vol. 179, pp. 104973, 2019. DOI: 10.1016/j.cmpb.2019.07.001.
  • M. M. Rashidi, S. Mahmud, N. Freidoonimehr and B. Rostami, “Analysis of entropy generation in an mhd flow over a rotating porous disk with variable physical properties,” IJEX, vol. 16, no. 4, pp. 481–503, 2015. DOI: 10.1504/IJEX.2015.069110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.