Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
115
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A generalized alternating direction implicit method for transient thermal simulation of 2-D structures with locally refined grids

, , &
Pages 99-114 | Received 25 Oct 2022, Accepted 28 Feb 2023, Published online: 15 Mar 2023

References

  • A. Rahman and R. Reif, “Thermal analysis of three-dimensional (3-D) integrated circuits (ICs),” presented at the Proc. Interconnect Technol. Conf., Burlingame, CA, pp. 157–159, Jun. 2001.
  • K. N. Tu, “Reliability challenges in 3D IC packaging technology,” Microelectron. Rel., vol. 51, no. 3, pp. 517–523, 2011. DOI: 10.1016/j.microrel.2010.09.031.
  • Y. Shabany, Heat Transfer: Thermal Management of Electronics, New York, NY, USA: Taylor & Francis, 2009, pp. 281–283.
  • M. P. Gupta, A. K. Vallabhaneni, and S. Kumar, “Self-consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 7, no. 8, pp. 1305–1312, Aug. 2017. DOI: 10.1109/TCPMT.2017.2693399.
  • D. M. Pozar, Microwave Engineering, vol. 162. New York: Wiley, 1998, pp. 424–427.
  • T. Lu and J.-M. Jin, “Thermal-aware high-frequency characterization of large-scale through-silicon-via structures,” IEEE Trans. Compon., Packag. Manufact. Technol., vol. 4, no. 6, pp. 1015–1025, Jun. 2014. DOI: 10.1109/TCPMT.2014.2312136.
  • J. Xu, X.-Y. Yin, and J. Mao, “Transient thermal analysis of GaN heterojunction transistors (HFETs) for high-power applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 55–57, Jan. 2007. DOI: 10.1109/LMWC.2006.887261.
  • F. Bertoluzza, N. Delmonte, and R. Menozzi, “Three-dimensional finite-element thermal simulation of GaN-based HEMTs,” Microelectron. Rel., vol. 49, no. 5, pp. 468–473, May 2009. DOI: 10.1016/j.microrel.2009.02.009.
  • M. N. Ozisik, Finite Difference Methods in Heat Transfer. New York: CRC, 1994.
  • Z. Liu, S. Swarup, S. X.-D. Tan, H.-B. Chen, and H. Wang, “Compact lateral thermal resistance model of TSVs for fast finite-difference based thermal analysis of 3-D stacked ICs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 33, no. 10, pp. 1490–1502, Oct. 2014. DOI: 10.1109/TCAD.2014.2334321.
  • A. Cebula and D. Taler, “Finite volume method in heat conduction,” in Encyclopedia of Thermal Stresses. Amsterdam, The Netherlands: Springer, 2014, pp. 1645–1658.
  • D. A. Calhoun, C. Halzel, and R. J. LeVeque, “Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains,” SIAM Rev., vol. 50, no. 4, pp. 723–752, 2008. DOI: 10.1137/060664094.
  • Z. Huang and M. Tang, “A finite volume scheme for thermal simulation using locally refined semi-structured grids,” presented at the Photonics & Electromagnetics Res. Symp. (PIERS), Hangzhou, China, pp. 508–512, 2022.
  • Z. Feng, N. Ma, W. Li, K. Narasaki, and F. Lu, “Efficient analysis of welding thermal conduction using the Newton–Raphson method, implicit method, and their combination,” Int. J. Adv. Manuf. Technol., vol. 111, no. 78, pp. 1929–1940, Oct. 2020. DOI: 10.1007/s00170-020-06233-6.
  • A. Fourmigue, G. Beltrame, and G. Nicolescu, “Transient thermal simulation of liquid-cooled 3-D circuits,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 6, no. 9, pp. 1349–1360, Sept. 2016. DOI: 10.1109/TCPMT.2016.2599100.
  • J. Douglas Jr. and J. E. Gunn, “A general formulation of alternating direction methods—Part I: Parabolic and hyperbolic problems,” Numer. Math., vol. 6, no. 1, pp. 428–453, 1964. DOI: 10.1007/BF01386093.
  • T.-Y. Wang and C. C.-P. Chen, “3-D thermal-ADI: A linear-time chip level transient thermal simulator,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 21, no. 12, pp. 1434–1445, Dec. 2002.
  • D. Y. Heh, E. L. Tan, and W. C. Tay, “Fast alternating direction implicit method for efficient transient thermal simulation of integrated circuits,” Int. J. Numer. Model., vol. 29, no. 1, pp. 93–108, 2016. DOI: 10.1002/jnm.2049.
  • J. Li, M. Tang, and J. F. Mao, “An efficient ADI method for transient thermal simulation of liquid-cooled 3-D ICs,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 12, no. 9, pp. 1484–1491, Sept. 2022. DOI: 10.1109/TCPMT.2022.3206613.
  • L. Sun, Y. Li, Q. Yuan, and W. Hong, “An innovative sub-gridding method for Helmholtz equation,” presented at the Int. Symp. Antennas and Propagation, Xi-an, China, Oct. 2019.
  • A. H. Ngo, T. Sekine, and H. Asai, “Subgrid-based equivalent circuit for transient thermal analysis using latency insertion method,” presented at the IEEE Int. Symp. Electromagnetic Compatibility & Signal/Power Integrity, Washington, DC, USA, Aug. 2017.
  • S. Zivanovic, K. Yee, and K. Mei, “A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 3, pp. 471–479, 1991. DOI: 10.1109/22.75289.
  • A. Tabarraei and N. Sukumar, “Adaptive computations on conforming quadtree meshes,” Finite Elem. Anal. Des., vol. 41, no. 78, pp. 686–702, Apr. 2005. DOI: 10.1016/j.finel.2004.08.002.
  • R. Hu, S. Pang, X. Chen, L. Liang, and X. Shao, “An octree-based adaptive mesh refinement method for three-dimensional modeling of keyhole mode laser welding,” Int. J. Heat Mass Tran., vol. 115, pp. 258–263, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.061.
  • H. Huang and H. Murakawa, “Thermo-mechanical analysis of line heating process by an efficient and accurate multi-level mesh refining method,” Mar. Struct., vol. 49, pp. 239–255, Sept. 2016. DOI: 10.1016/j.marstruc.2016.09.001.
  • T.-Y. Wang and C. C. P. Chen, “Thermal-ADI—A linear-time chip-level dynamic thermal-simulation algorithm based on alternating-direction-implicit (ADI) method,” IEEE Trans. VLSI Syst., vol. 11, no. 4, pp. 691–700, Aug. 2003. DOI: 10.1109/TVLSI.2003.812372.
  • COMSOL Multiphysics® v. 5.4. Stockholm, Sweden: COMSOL AB, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.