Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 2
239
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of irreversibility for 3-D MHD convective Darcy–Forchheimer Casson hybrid nanofluid flow due to a rotating disk with Cattaneo–Christov heat flux, Joule heating, and nonlinear thermal radiation

, &
Pages 115-142 | Received 28 Oct 2022, Accepted 28 Feb 2023, Published online: 21 Mar 2023

References

  • S. Z. Heris, S. Zeinali, M. N. Esfahani, and S. G. Etemad, “Experimental investigation of convective heat transfer of Al2O3/water nanofluid in a circular tube,” Int. J. Heat Fluid Flow, vol. 28, no. 5, pp. 203–210, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.05.001.
  • O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1326–1332, 2011. DOI: 10.1016/j.ijthermalsci.2011.02.019.
  • D. Ramya, R. S. Raju, J. A. Rao, and A. J. Chamkha, “Effects of velocity and thermal wall slip on magnetohydrodynamics (MHD) boundary layer viscous flow and heat transfer of a nanofluid over a non-linearly-stretching sheet: A numerical study,” Propuls. Power Res., vol. 7, no. 2, pp. 182–195, 2018. DOI: 10.1016/j.jppr.2018.04.003.
  • R. Choudhury and S. K. Das, “Visco-elastic MHD free convective flow through porous media in presence of radiation and chemical reaction with heat and mass transfer,” J. Appl. Fluid Mech., vol. 7, no. 4, pp. 603–609, 2014. DOI: 10.36884/jafm.7.04.20307.
  • N. Sene, “ Second-grade fluid with Newtonian heating under Caputo fractional derivative: Analytical investigations via Laplace transforms,” Math. Model. Numer. Appl., vol. 2, no. 1, pp. 13–25, 2022. DOI: 10.53391/mmnsa.2022.01.002.
  • M. K. Nayak, S. Shaw, and A. J. Chamkha, “Impact of variable magnetic field and convective boundary condition on a stretched 3D radiative flow of Cu-H2O nanofluid,” AMSE J. AMSE IIETA Ser.: Model. B, vol. 86, no. 3, pp. 658–678, 2018. DOI: 10.18280/mmc_b.860305.
  • M. Khan, A. Hussain, M. Y. Malik, T. Salahuddin, and F. Khan, “Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: A numerical investigation,” Res. Phys., vol. 7, pp. 2837–2844, 2017. DOI: 10.1016/j.rinp.2017.07.061.
  • G. Mahanta, S. Mohanta, and D. Mohanty, “Stability and convergence analysis of Casson-nano fluid flow is heated non-linearly with viscous dissipation with convective boundary conditions,” Int. J. Appl. Eng. Res., vol. 17, no. 3, pp. 290–298, 2022. DOI: 10.37622/IJAER/17.3.2022.290-298.
  • N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer over a rotating porous disk in a nanofluid,” Phys. B: Condens. Matter, vol. 406, no. 9, pp. 1767–1772, 2011. DOI: 10.1016/j.physb.2011.02.024.
  • M. K. Nayak, S. Shaw, M. I. Khan, V. S. Pandey, and M. Nazeer, “Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: A static and dynamic approach,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 7387–7408, 2020. DOI: 10.1016/j.jmrt.2020.04.074.
  • T. Hayat, M. I. Khan, S. Qayyum, M. I. Khan, and A. Alsaedi, “Entropy generation for flow of Sisko fluid due to rotating disk,” J. Mol. Liq, vol. 264, pp. 375–385, 2018. DOI: 10.1016/j.molliq.2018.05.022.
  • S. A. Shah, A. Mouldi, and N. Sene, “Nonlinear convective SiO2 and TiO2 hybrid nanofluid flow over an inclined stretched surface,” J. Nanomater., vol. 2022, pp. 1–11, 2022. DOI: 10.1155/2022/6237698.
  • F. Abbas et al., “Nanofluid: Potential evaluation in the automotive radiator,” J. Mol. Liq., vol. 297, pp. 112014, 2020. DOI: 10.1016/j.molliq.2019.112014.
  • H. Babar and H. M. Ali, “Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges,” J. Mol. Liq., vol. 281, pp. 598–633, 2019. DOI: 10.1016/j.molliq.2019.02.102.
  • M. Ghalambaz, N. C. Roşca, A. V. Roşca, and I. Pop, “Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate,” Int. J. Numer. Methods Heat Fluid Flow, vol. 30, no. 7, pp. 3737–3754, 2019. DOI: 10.1108/HFF-08-2019-0661.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer,” Exp. Therm. Fluid Sci., vol. 38, pp. 54–60, 2012. DOI: 10.1016/j.expthermflusci.2011.11.007.
  • N. A. L. Aladdin, N. Bachok, and I. Pop, “Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects,” Alex. Eng. J., vol. 59, no. 2, pp. 657–666, 2020. DOI: 10.1016/j.aej.2020.01.028.
  • R. Jusoh et al., “Mathematical analysis of the flow and heat transfer of Ag-Cu hybrid nanofluid over a stretching/shrinking surface with convective boundary condition and viscous dissipation,” Data Anal. Appl. Math., vol. 1, no. 1, pp. 11–22, 2020. DOI: 10.15282/daam.v1i01.5105.
  • I. Waini, A. Ishak, and I. Pop, “Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid,” Int. J. Heat Mass Transf., vol. 136, pp. 288–297, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.101.
  • D. Toghraie, V. A. Chaharsoghi, and M. Afraid, “Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 527–535, 2016. DOI: 10.1007/s10973-016-5436-4.
  • A. Asadi, I. M. Alarifi, and L. K. Foong, “An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid,” J. Mol. Liq., vol. 307, pp. 112987, 2020. DOI: 10.1016/j.molliq.2020.112987.
  • D. Pal and H. Mondal, “Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 4, pp. 1942–1958, 2011. DOI: 10.1016/j.cnsns.2010.08.033.
  • D. Pal and H. Mondal, “Effects of temperature-dependent viscosity and variable thermal conductivity on MHD non-Darcy mixed convective diffusion of species over a stretching sheet,” J. Egypt. Math. Soc., vol. 22, no. 1, pp. 123–133, 2014. DOI: 10.1016/j.joems.2013.05.010.
  • O. Anwar Bég, J. Zueco, and H. S. Takhar, “Laminar free convection from a continuously-moving vertical surface in thermally-stratified non Darcian high-porosity medium: Network numerical study,” Int. Commun. Heat Mass Transf., vol. 35, pp. 810–816, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.03.007.
  • N. Dalir, M. Dehsara, and S. S. Nourazar, “Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet,” Energy, vol. 79, pp. 351–362, 2015. DOI: 10.1016/j.energy.2014.11.021.
  • F. Shah et al., “Theoretical and mathematical analysis of entropy generation in fluid flow subject to aluminum and ethylene glycol nanoparticles,” Comput. Methods Programs Biomed., vol. 182, pp. 105057, 2019. DOI: 10.1016/j.cmpb.2019.105057.
  • M. A. Z. Raja et al., “Intelligent computing through neural networks for entropy generation in MHD third-grade nanofluid under chemical reaction and viscous dissipation,” Waves Random Complex Media, pp. 1–25, 2022. DOI: 10.1080/17455030.2022.2044095.
  • M. Qasim and M. I. Afridi, “Effects of energy dissipation and variable thermal conductivity on entropy generation rate in mixed convection flow,” J. Therm. Sci. Eng. Appl., vol. 10, no. 4, pp. 044501, 2018. DOI: 10.1115/1.4038703.
  • M. Mahdavi, M. Saffar-Avval, S. Tiari, and Z. Mansoori, “Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium,” Int. J. Heat Mass Transf., vol. 79, pp. 496–506, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.037.
  • N. A. Zainal, R. Nazar, K. Naganthran, and I. Pop, “MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition,” Chin. J. Phys., vol. 66, pp. 630–644, 2020. DOI: 10.1016/j.cjph.2020.03.022.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid,” Powder Technol., vol. 367, pp. 192–205, 2020. DOI: 10.1016/j.powtec.2020.03.030.
  • S. Das, R. N. Jana, and O. D. Makinde, “MHD flow of Cu-Al2O3/water hybrid nanofluid in porous channel: Analysis of entropy generation,” Defect Diffusion Forum, vol. 377, pp. 42–61, 2017. DOI: 10.4028/www.scientific.net/DDF.377.42.
  • S. Qayyum et al., “Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and first-order velocity slip,” Math. Methods Appl. Sci., vol. 44, pp. 7756–7765, 2021. DOI: 10.1002/mma.6735.
  • T. Rafiq and M. Mustafa, “Computational analysis of unsteady swirling flow around a decelerating rotating porous disk in nanofluid,” Arab. J. Sci. Eng., vol. 45, pp. 1143–1154, 2019. DOI: 10.1007/s13369-019-04257-z.
  • L. T. Watson and C. Y. Wang, “Deceleration of a rotating disk in a viscous fluid,” Phys. Fluids, vol. 22, pp. 2267–2269, 1979. DOI: 10.1063/1.862535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.