Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 2
48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A multicomponent multitemperature model for simulating laminar deflagration waves in mixtures of air and hydrogen

Pages 166-207 | Received 12 Sep 2022, Accepted 09 Mar 2023, Published online: 04 Apr 2023

References

  • F. A. Williams, “Combustion theory: The fundamental theory of chemically reacting flow systems,” Tech. Rep., 1985.
  • L. He and P. Clavin, “Premixed hydrogen-oxygen flames. Part I: Flame structure near the flammability limits,” Combust. Flame, vol. 93, no. 4, pp. 391–407, 1993. DOI: 10.1016/0010-2180(93)90140-X.
  • L. He and P. Clavin, “Premixed hydrogen-oxygen flames. Part II: Quasi-isobaric ignition near the flammability limits,” Combust. Flame, vol. 93, no. 4, pp. 408–420, 1993. DOI: 10.1016/0010-2180(93)90141-O.
  • P. Clavin, “Dynamic behavior of premixed flame fronts in laminar and turbulent flows,” Prog. Energy Combust. Sci., vol. 11, no. 1, pp. 1–59, 1985. DOI: 10.1016/0360-1285(85)90012-7.
  • T. Barberon and P. Helluy, “Finite volume simulation of cavitating flows,” Comput. Fluids, vol. 34, no. 7, pp. 832–858, 2005. DOI: 10.1016/j.compfluid.2004.06.004.
  • H. Mathis, “A thermodynamically consistent model of a liquid-vapor fluid with a gas,” ESAIM: M2AN, vol. 53, no. 1, pp. 63–84, 2019. DOI: 10.1051/m2an/2018044.
  • O. Hurisse and L. Quibel, “Simulations of water-vapor two-phase flows with non-condensable gas using a noble-able-chemkin stiffened gas equation of state,” Comput. Fluids, vol. 239, pp. 105399, 2022. DOI: 10.1016/j.compfluid.2022.105399.
  • V. Giovangigli, “Multicomponent flow modeling,” Sci. China Math., vol. 55, no. 2, pp. 285–308, 2012. DOI: 10.1007/s11425-011-4346-y.
  • V. Giovangigli, “Mathematics of thermochemistry,” in Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser, 1999, pp. 119–156.
  • A. Ern and V. Giovangigli, “Impact of detailed multicomponent transport on planar and counterflow hydrogen/air and methane/air flames,” Combust. Sci. Technol., vol. 149, no. 16, pp. 157–181, 1999. DOI: 10.1080/00102209908952104.
  • N. Marinov, C. Westbrook, and W. Pitz, “Detailed and global chemical kinetics model for hydrogen,” Transport Phenomena Combust., vol. 1, pp. 118, 1996.
  • A. A. Konnov, “Remaining uncertainties in the kinetic mechanism of hydrogen combustion,” Combust. Flame, vol. 152, no. 4, pp. 507–528, 2008. DOI: 10.1016/j.combustflame.2007.10.024.
  • A. L. Sánchez and F. A. Williams, “Recent advances in understanding of flammability characteristics of hydrogen,” Prog. Energy Combust. Sci., vol. 41, pp. 1–55, 2014. DOI: 10.1016/j.pecs.2013.10.002.
  • D. G. Goodwin, H. K. Moffat, and R. L. Speth, Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Tech. Rep. Pasadena, CA: Caltech, 2009.
  • O. R. Hansen, J. Renoult, M. Sherman, and S. Tieszen, Validation of FLACS-Hydrogen CFD Consequence Prediction Model against Large Scale H2 Explosion Experiments in the FLAME Facility, Tech. Rep. Bergen: Hydrogen Knowledge Centre, 2005.
  • GexCon, FLACS v10.4 User’s Manual. Bergen, Norway: GexCon AS, 2009.
  • B. Gamal, L. Gastaldo, and D. Veynante, “The CALIF 3 S-P 2 REMICS software: Simulation of accelerated deflagrations using RANS and LES approaches,” presented at the 10th European Combustion Meeting, Napoli (virtual conference), Italy, Apr. 2021, pp. 1201–1206.
  • S. Gavrilyuk, J.-M. Hérard, O. Hurisse, and A. Toufaili, “Theoretical and numerical analysis of a simple model derived from compressible turbulence,” J. Math. Fluid Mech., vol. 24, no. 2, pp. 1–34, 2022. DOI: 10.1007/s00021-022-00676-5.
  • D. T. Butler and P. J. O’Rourke, “A numerical method for two dimensional unsteady reacting flows,” presented at the Symposium (international) on combustion, vol. 16, no. 1. Elsevier, 1977, pp. 1503–1515.
  • E. Vyazmina et al., “Vented explosion of hydrogen/air mixture: An intercomparison benchmark exercise,” Int. J. Hydrog. Energy, vol. 44, no. 17, pp. 8914–8926, 2019. DOI: 10.1016/j.ijhydene.2018.07.195.
  • O. Hurisse, “BGK source terms for out-of-equilibrium two-phase flow models,” Continuum Mech. Thermodyn., vol. 34, no. 3, pp. 721–737, 2022. DOI: 10.1007/s00161-022-01085-9.
  • E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws. Ellipses, 1991, pp. 3–4.
  • J. Smoller, Shock Waves and Reaction–Diffusion Equations, vol. 258. Springer Science & Business Media, 2012.
  • C. Chalons and J.-F. Coulombel, “Relaxation approximation of the Euler equations,” J. Math. Anal. Appl., vol. 348, no. 2, pp. 872–893, 2008. DOI: 10.1016/j.jmaa.2008.07.034.
  • S. Jin and Z. Xin, “The relaxation schemes for systems of conservation laws in arbitrary space dimensions,” Commun. Pure Appl. Math., vol. 48, no. 3, pp. 235–276, 1995. DOI: 10.1002/cpa.3160480303.
  • I. Suliciu, “On the thermodynamics of fluids with relaxation and phase transitions. Fluids with relaxation,” Int. J. Eng. Sci., vol. 36, no. 9, pp. 921–947, 1998. DOI: 10.1016/S0020-7225(98)00005-6.
  • P. Helluy, O. Hurisse, and L. Quibel, “Assessment of numerical schemes for complex two-phase flows with real equations of state,” Comput. Fluids, vol. 196, pp. 104347, 2020. DOI: 10.1016/j.compfluid.2019.104347.
  • S. Dellacherie, “Analysis of godunov type schemes applied to the compressible Euler system at low mach number,” J. Comput. Phys., vol. 229, no. 4, pp. 978–1016, 2010. DOI: 10.1016/j.jcp.2009.09.044.
  • T. Gallouët, J.-M. Hérard, and N. Seguin, “Some recent finite volume schemes to compute Euler equations using real gas EOS,” Int. J. Numer. Meth. Fluids, vol. 39, no. 12, pp. 1073–1138, 2002. DOI: 10.1002/fld.346.
  • P. Bruel, S. Delmas, J. Jung, and V. Perrier, “A low mach correction able to deal with low mach acoustics,” J. Comput. Phys., vol. 378, pp. 723–759, 2019. DOI: 10.1016/j.jcp.2018.11.020.
  • S. Perron, S. Boivin, and J.-M. Hérard, “A finite volume method to solve the 3D Navier–Stokes equations on unstructured collocated meshes,” Comput. Fluids, vol. 33, no. 10, pp. 1305–1333, 2004. DOI: 10.1016/j.compfluid.2003.10.006.
  • S. Dorofeev, V. Sidorov, M. Kuznetsov, I. Matsukov, and V. Alekseev, “Effect of scale on the onset of detonations,” Shock Waves, vol. 10, no. 2, pp. 137–149, 2000. DOI: 10.1007/s001930050187.
  • K. Kuo, Principles of Combustion, 2nd ed. New York: Wiley, 2005.
  • V. Schröder and K. Holtappels, Explosion Characteristics of Hydrogen-Air and Hydrogen-Oxygen Mixtures at Elevated Pressures, Tech. Rep. Hydrogen Knowledge Centre, 2005.
  • G. Lacaze, “Simulation aux grandes echelles de l’allumage de moteurs fusées cryotechniques,” Ph.D. dissertation, Institut National Polytechnique de Toulouse, France, 2009.
  • P. Quillatre, “Simulation aux grandes échelles d’explosions en domaine semi-confiné,” Ph.D. dissertation, Université de Toulouse, France, 2014.
  • V. Casulli and D. Greenspan, “Pressure method for the numerical solution of transient, compressible fluid flows,” Int. J. Numer. Meth. Fluids, vol. 4, no. 11, pp. 1001–1012, 1984. DOI: 10.1002/fld.1650041102.
  • P. Colella and K. Pao, “A projection method for low speed flows,” J. Comput. Phys., vol. 149, no. 2, pp. 245–269, 1999. DOI: 10.1006/jcph.1998.6152.
  • R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting,” J. Comput. Phys., vol. 62, no. 1, pp. 40–65, 1986. DOI: 10.1016/0021-9991(86)90099-9.
  • K. Karki and S. Patankar, “Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations,” AIAA J., vol. 27, no. 9, pp. 1167–1174, 1989. DOI: 10.2514/3.10242.
  • A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math. Comput., vol. 22, no. 104, pp. 745–762, 1968. DOI: 10.1090/S0025-5718-1968-0242392-2.
  • J. Jung, “Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides,” Ph.D. dissertation, Université de Strasbourg, France, 2013.
  • A. Harten, P. D. Lax, and B. v Leer, “On upstream differencing and godunov-type schemes for hyperbolic conservation laws,” SIAM Rev., vol. 25, no. 1, pp. 35–61, 1983. DOI: 10.1137/1025002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.